def run_qc_temporal(func_path, mask_path, motion_matrix_path, subject=None, session=None, scan=None, verbose=False): # DVARS if verbose: print "...dvars" mean_dvars = mean_dvars_wrapper(func_path, mask_path) # Mean FD (Jenkinson) if verbose: print "...mean FD" mean_fd = mean_fd_wrapper(motion_matrix) # 3dTout if verbose: print "...3dTout" mean_outlier= mean_outlier_timepoints(func_path, mask_path) # 3dTqual if verbose: print "...3dTqual" mean_quality= mean_quality_timepoints(func_path) # Compile qc = { "subject": subject, "session": session, "scan": scan, "dvars": mean_dvars, "fd": mean_fd, "outlier": mean_outlier, "quality": mean_quality } return qc
def run_qc_temporal(func_path, mask_path, motion_matrix_path, subject=None, session=None, scan=None, verbose=False, motion_threshold=1.0, opts=["dvars", "fd", "outlier", "quality"]): # DVARS if "dvars" in opts: if verbose: print "...dvars" mean_dvars = mean_dvars_wrapper(func_path, mask_path) else: mean_dvars = None # Mean FD (Jenkinson) if "fd" in opts: if verbose: print "...mean FD" (mean_fd, num_fd, percent_fd) = summarize_fd(motion_matrix_path, threshold=motion_threshold) else: (mean_fd, num_fd, percent_fd) = (None, None, None) # 3dTout if "outlier" in opts: if verbose: print "...3dTout" mean_outlier= mean_outlier_timepoints(func_path, mask_path) else: mean_outlier= None # 3dTqual if "quality" in opts: if verbose: print "...3dTqual" mean_quality= mean_quality_timepoints(func_path) else: mean_quality= None # Compile qc = { "subject": subject, "session": session, "scan": scan, "dvars": mean_dvars, "mean_fd": mean_fd, 'num_fd': num_fd, 'perc_fd': percent_fd, "outlier": mean_outlier, "quality": mean_quality } return qc