Exemple #1
0
def test_qr():
    for shape in [(4, 4), (6, 8), (8, 6)]:
        tol = shape[0] * shape[1] * 100
        for qtotal_A in [None, [1]]:
            A = random_Array(shape, chinfo3, qtotal=qtotal_A, sort=False)
            A_flat = A.to_ndarray()
            for qtotal_Q in [None, [1]]:
                for mode in ['reduced', 'complete']:
                    for qconj in [+1, -1]:
                        for pos in [False, True]:
                            print(
                                f"shape={shape!s} qtot_A={qtotal_A!s} qtot_Q={qtotal_Q!s}"
                                f"mode={mode!s} pos_diag_R={pos!s} inner_qconj={qconj:+d}"
                            )
                            Q, R = npc.qr(A,
                                          mode=mode,
                                          pos_diag_R=pos,
                                          qtotal_Q=qtotal_Q,
                                          inner_qconj=qconj)
                            #  print(q._qdata)
                            Q.test_sanity()
                            R.test_sanity()
                            assert np.all(
                                Q.qtotal) == A.chinfo.make_valid(qtotal_Q)
                            assert R.legs[0].qconj == qconj
                            QR = npc.tensordot(Q, R, axes=1)
                            npt.assert_array_almost_equal_nulp(
                                A_flat, QR.to_ndarray(), tol)
                            QdaggerQ = npc.tensordot(Q.conj(), Q, axes=[0, 0])
                            assert npc.norm(QdaggerQ -
                                            npc.eye_like(QdaggerQ)) < 1.e-10
def test_qr():
    for shape in [(4, 4), (6, 8), (8, 6)]:
        for qtotal in [None, [1]]:
            print("qtotal=", qtotal, "shape =", shape)
            A = random_Array(shape, chinfo3, qtotal=qtotal, sort=False)
            A_flat = A.to_ndarray()
            q, r = npc.qr(A, 'reduced')
            print(q._qdata)
            q.test_sanity()
            r.test_sanity()
            qr = npc.tensordot(q, r, axes=1)
            npt.assert_array_almost_equal_nulp(A_flat, qr.to_ndarray(), shape[0] * shape[1] * 100)