Exemple #1
0
def create_layer():
    layers = layer.Layers()

    layers.append_affine(tensor.create_randomly([18, 13]),
                         tensor.create_zeros([13]))
    layers.append_batchnormalization(tensor.create_ones([13]),
                                     tensor.create_zeros([13]))
    layers.append_sigmoid()

    layers.append_affine(tensor.create_randomly([13, 7]),
                         tensor.create_zeros([7]))
    layers.append_batchnormalization(tensor.create_ones([7]),
                                     tensor.create_zeros([7]))
    layers.append_sigmoid()

    layers.append_affine(tensor.create_randomly([7, 2]),
                         tensor.create_randomly([2]))
    layers.append_softmax()

    layers.set_train_mode(True)

    loss_list = []

    with open("ttt_layers.bin", 'wb') as f:
        pickle.dump(layers, f)
    with open("ttt_loss_list.bin", 'wb') as f:
        pickle.dump(loss_list, f)
    print("done")
Exemple #2
0
def test_affine(data_shape, w_shape, error=0.00001):
    tensor_data = tensor.create_randomly(data_shape)
    tensor_w = tensor.create_randomly(w_shape)
    tensor_b = tensor.create_randomly([w_shape[-1]])
    numpy_data = parseNumpy(tensor_data)
    numpy_w = parseNumpy(tensor_w)
    numpy_b = parseNumpy(tensor_b)
    tensor_layer = layer.Affine(tensor_w, tensor_b)
    numpy_layer = common.layers.Affine(numpy_w, numpy_b)

    tensor_y = tensor_layer.forward(tensor_data).copy()
    numpy_y = numpy_layer.forward(numpy_data)
    tensor_dout = tensor.create_randomly(tensor_y.shape)
    numpy_dout = parseNumpy(tensor_dout)

    tensor_dout = tensor_layer.backward(tensor_dout)
    numpy_dout = numpy_layer.backward(numpy_dout)

    print("forward")
    print(compare(tensor_y, numpy_y))
    print("backward")
    print(compare(tensor_dout, numpy_dout))
    print("dW")
    print(compare(tensor_layer.dW, numpy_layer.dW))
    print("db")
    print(compare(tensor_layer.db, numpy_layer.db))
Exemple #3
0
def test_matmul(shape1, shape2, error=0.001):
    t1 = tensor.create_randomly(shape1)
    t2 = tensor.create_randomly(shape2)
    n1 = parseNumpy(t1)
    n2 = parseNumpy(t2)
    t = tensor.matmul(t1, t2, tensor.create_matrix_product(t1, t2))
    n = np.matmul(n1, n2)
    print(t)
    print(n)
    return compare(t, n)
Exemple #4
0
def test_axis(shape, axis, error=0.001):
    t1 = tensor.create_randomly(shape)
    n1 = parseNumpy(t1)
    t = tensor.sum_axis(t1, axis, tensor.create_sum(t1, axis))
    n = np.sum(n1, axis)
    print(t1)
    print(t)
    print(n)
    return compare(t, n)
Exemple #5
0
def test_sigmoid(shape, error=0.0001):
    tensor_data = tensor.create_randomly(shape)
    numpy_data = parseNumpy(tensor_data)

    tensor_layer = layer.Sigmoid()
    numpy_layer = common.layers.Sigmoid()

    tensor_y = tensor_layer.forward(tensor_data).copy()
    numpy_y = numpy_layer.forward(numpy_data)

    tensor_dout = tensor.create_randomly(tensor_y.shape)
    numpy_dout = parseNumpy(tensor_dout)

    tensor_dout = tensor_layer.backward(tensor_dout)
    numpy_dout = numpy_layer.backward(numpy_dout)

    print("forward")
    print(tensor_y)
    print(numpy_y)
    print(compare(tensor_y, numpy_y, error))
    print("backward")
    print(compare(tensor_dout, numpy_dout, error))
Exemple #6
0
def test_softmax(y_shape, one_hot_table, error=0.001):
    tensor_y = tensor.create_randomly(y_shape)
    numpy_y = parseNumpy(tensor_y)

    if (one_hot_table):
        tensor_t = tensor.create_zeros(y_shape, int)

        for i in range(y_shape[0]):
            tensor_t.array[i * y_shape[-1] +
                           rand.randint(0, y_shape[-1] - 1)] = 1

    else:
        tensor_t = tensor.create_zeros([y_shape[0], 1], int)
        for i in range(y_shape[0]):
            tensor_t.array[i] = rand.randint(0, y_shape[-1] - 1)

    numpy_t = parseNumpy(tensor_t)
    print(numpy_t)

    tensor_layer = layer.Softmax()
    numpy_layer = common.layers.SoftmaxWithLoss()

    tensor_layer.forward(tensor_y)
    numpy_loss = numpy_layer.forward(numpy_y, numpy_t)

    tensor_y = tensor_layer.out.copy()
    numpy_y = numpy_layer.y

    tensor_layer.init_table(tensor_t)
    tensor_dout = tensor_layer.backward(1)
    numpy_dout = numpy_layer.backward()

    print("loss")
    print(tensor_layer.loss)
    print(numpy_loss)
    print("forward")
    print(tensor_y)
    print(numpy_y)
    print(compare(tensor_y, numpy_y, error))
    print("backward")
    print(tensor_dout)
    print(numpy_dout)
    print(compare(tensor_dout, numpy_dout, error))
Exemple #7
0
def batch_nrom_forward(x_shape):
    def process_no_zero(x):
        return x + 10e-7

    x = tensor.create_randomly(x_shape, -3, 4)
    #x = tensor.Tensor([1.,2.,3.,5.],[1,4])
    mean = tensor.create_sum(x, 0)
    deviation = tensor.create_element_wise_product(x, mean)
    jegop = tensor.create_element_wise_product(deviation, deviation)
    dispersion = tensor.create_sum(jegop, 0)
    dispersion2 = dispersion.copy()
    #std = dispersion.copy()

    forward_out = x.copy()
    forward_new_out = x.copy()
    compare_out = x.copy()

    print(x)
    #잘 알려진 방법
    tensor.mean_axis(x, 0, mean)
    print(mean)
    tensor.sub(x, mean, deviation)
    tensor.mul(deviation, deviation, jegop)
    tensor.mean_axis(jegop, 0, dispersion)
    tensor.function(dispersion, process_no_zero, dispersion)
    tensor.function(dispersion, math.sqrt, dispersion)
    tensor.div(deviation, dispersion, forward_out)

    #새로운 방법
    norm.forward(x.array, x.shape, dispersion2.array, forward_new_out.array)

    tensor.function_element_wise(forward_out, forward_new_out, isSame,
                                 compare_out)

    print(compare_out)

    pass
Exemple #8
0
def test_norm_backward(x_shape, h=0.001):
    def process_no_zero(x):
        return x + 10e-7

    x = tensor.create_randomly(x_shape, -3, 4)
    #x = tensor.Tensor([1.,2.,3.,5.],[1,4])
    mean = tensor.create_sum(x, 0)
    d_mean = mean.copy()
    #d_mean2 = mean.copy()
    deviation = tensor.create_element_wise_product(x, mean)
    jegop = tensor.create_element_wise_product(deviation, deviation)
    print(jegop.shape)
    dispersion = tensor.create_sum(jegop, 0)
    print(dispersion.shape)
    dispersion2 = dispersion.copy()
    d_dispersion = dispersion.copy()
    d_deviation = deviation.copy()

    batch_size = tensor.Tensor([x_shape[0]], [1])

    tmp_x = x.copy()

    forward_out = x.copy()
    forward_new_out = x.copy()
    backward_out = x.copy()
    backward_new_out = x.copy()
    compare_out = x.copy()
    #dx = tensor.create_ones(x.shape)
    dx = tensor.create_randomly(x.shape)

    print(x)
    #잘 알려진 방법
    #forward
    tensor.mean_axis(x, 0, mean)
    print(mean)
    tensor.sub(x, mean, deviation)
    tensor.mul(deviation, deviation, jegop)
    tensor.mean_axis(jegop, 0, dispersion)
    tensor.function(dispersion, process_no_zero, dispersion)
    tensor.function(dispersion, math.sqrt, dispersion)
    tensor.div(deviation, dispersion, forward_out)
    #backward
    tensor.div(dx, dispersion, d_deviation)
    tensor.mul(dx, deviation, tmp_x)
    tensor.div(tmp_x, dispersion, tmp_x)
    tensor.sum_axis(tmp_x, 0, d_dispersion)
    tensor.div(tmp_x, dispersion, tmp_x)
    tensor.sum_axis(tmp_x, 0, d_dispersion)  #

    def mul_minus(x):
        return -x

    tensor.function(d_dispersion, mul_minus, d_dispersion)

    tensor.div(deviation, dispersion, tmp_x)
    tensor.mul(tmp_x, d_dispersion, tmp_x)
    tensor.div(tmp_x, batch_size, tmp_x)
    tensor.add(tmp_x, d_deviation, d_deviation)
    tensor.sum_axis(d_deviation, 0, d_mean)
    tensor.div(d_mean, batch_size, d_mean)
    tensor.sub(d_deviation, d_mean, backward_out)

    #새로운 방법
    norm.forward(x.array, x.shape, dispersion2.array, forward_new_out.array)
    backward_new_out = forward_new_out.copy()
    norm.backward(dx.array, dispersion2.array, backward_new_out.array)

    tensor.function_element_wise(backward_out, backward_new_out, isSame,
                                 compare_out)
    print('back = ')
    print(compare_out)
    tensor.function_element_wise(forward_out, forward_new_out, isSame,
                                 compare_out)
    print('forward = ')
    print(compare_out)
    dispersion_compare = dispersion.copy()
    tensor.function_element_wise(dispersion, dispersion2, isSame,
                                 dispersion_compare)
    print('dispersion = ')
    print(dispersion_compare)
Exemple #9
0
def test_layer_with_batchNormalization(data_shape,
                                       layer1_shape,
                                       layer2_shape,
                                       loop_count,
                                       error=0.001):
    tensor_x = tensor.create_randomly(data_shape)
    numpy_x = parseNumpy(tensor_x)

    tensor_t = tensor.create_zeros([data_shape[0], layer2_shape[-1]], int)
    for i in range(data_shape[0]):
        tensor_t.array[i * layer2_shape[-1] +
                       rand.randint(0, layer2_shape[-1] - 1)] = 1

    numpy_t = parseNumpy(tensor_t)

    tensor_w1 = tensor.create_randomly(layer1_shape)
    tensor_b1 = tensor.create_randomly([layer1_shape[-1]])

    tensor_w2 = tensor.create_randomly(layer2_shape)
    tensor_b2 = tensor.create_randomly([layer2_shape[-1]])

    tensor_gamma1 = tensor.create_ones([layer1_shape[-1]])
    tensor_beta1 = tensor.create_zeros([layer1_shape[-1]])

    numpy_w1 = parseNumpy(tensor_w1)
    numpy_b1 = parseNumpy(tensor_b1)

    numpy_w2 = parseNumpy(tensor_w2)
    numpy_b2 = parseNumpy(tensor_b2)

    numpy_gamma1 = parseNumpy(tensor_gamma1)
    numpy_beta1 = parseNumpy(tensor_beta1)

    #layer
    import layer
    tensor_layer = layer.Layers()
    tensor_layer.append_affine(tensor_w1, tensor_b1)
    tensor_layer.append_batchnormalization(tensor_gamma1, tensor_beta1)
    tensor_layer.append_sigmoid()
    tensor_layer.append_affine(tensor_w2, tensor_b2)
    tensor_layer.append_softmax()

    numpy_layers = []
    numpy_layers.append(common.layers.Affine(numpy_w1, numpy_b1))
    numpy_layers.append(
        common.layers.BatchNormalization(numpy_gamma1, numpy_beta1))
    numpy_layers.append(common.layers.Sigmoid())
    numpy_layers.append(common.layers.Affine(numpy_w2, numpy_b2))
    numpy_last_layer = common.layers.SoftmaxWithLoss()

    tensor_layer.set_train_mode(True)

    for i in range(loop_count):
        #forward
        t = time.time()
        tensor_forward = tensor_layer.forward(tensor_x).copy()
        print("tensor forward time : ", time.time() - t)
        t = time.time()
        numpy_X = numpy_x
        for layer in numpy_layers:
            numpy_X = layer.forward(numpy_X)
        numpy_loss = numpy_last_layer.forward(numpy_X, numpy_t)
        numpy_forward = numpy_last_layer.y
        print("numpy forward time : ", time.time() - t)
        #print("pre_batch : ", tensor_layer.layers[0].out)
        #print("batch : ", tensor_layer.layers[1].out)

        #backward
        t = time.time()
        tensor_dout = tensor_layer.backward(tensor_t)
        tensor_loss = tensor_layer.layers[-1].loss
        print("tensor backward time : ", time.time() - t)

        t = time.time()
        numpy_dout = numpy_last_layer.backward(1)
        for i in range(len(numpy_layers)):
            numpy_dout = numpy_layers[-1 - i].backward(numpy_dout)
        print("numpy backward time : ", time.time() - t)

        #update
        t = time.time()
        tensor_layer.update(tensor.Tensor([0.1], [1]))
        print("tensor update time : ", time.time() - t)
        t = time.time()
        numpy_layers[0].W -= 0.1 * numpy_layers[0].dW
        numpy_layers[0].b -= 0.1 * numpy_layers[0].db
        numpy_layers[3].W -= 0.1 * numpy_layers[3].dW
        numpy_layers[3].b -= 0.1 * numpy_layers[3].db
        numpy_layers[1].gamma -= 0.1 * numpy_layers[1].dgamma
        numpy_layers[1].beta -= 0.1 * numpy_layers[1].dbeta
        print("numpy update time : ", time.time() - t)

        print("loss")
        print("tensor : ", tensor_loss)
        print("numpy : ", numpy_loss)
        print("forward")
        print(compare(tensor_forward, numpy_forward, error))
        print("backward")
        print(compare(tensor_dout, numpy_dout, error))

        print("update")
        print("new w1")
        print(compare(tensor_layer.layers[0].W, numpy_layers[0].W, error))
        print("new b1")
        print(compare(tensor_layer.layers[0].b, numpy_layers[0].b, error))
        print("new w2")
        print(compare(tensor_layer.layers[3].W, numpy_layers[3].W, error))
        print("new b2")
        print(compare(tensor_layer.layers[3].b, numpy_layers[3].b, error))
    return tensor_layer, numpy_layers
Exemple #10
0
def test_layer(data_shape,
               layer1_shape,
               layer2_shape,
               loop_count,
               error=0.001):
    tensor_x = tensor.create_randomly(data_shape)
    numpy_x = parseNumpy(tensor_x)

    tensor_t = tensor.create_zeros([data_shape[0], layer2_shape[-1]], int)
    for i in range(data_shape[0]):
        tensor_t.array[i * layer2_shape[-1] +
                       rand.randint(0, layer2_shape[-1] - 1)] = 1

    numpy_t = parseNumpy(tensor_t)

    tensor_w1 = tensor.create_randomly(layer1_shape)
    tensor_b1 = tensor.create_randomly([layer1_shape[-1]])

    tensor_w2 = tensor.create_randomly(layer2_shape)
    tensor_b2 = tensor.create_randomly([layer2_shape[-1]])

    numpy_w1 = parseNumpy(tensor_w1)
    numpy_b1 = parseNumpy(tensor_b1)

    numpy_w2 = parseNumpy(tensor_w2)
    numpy_b2 = parseNumpy(tensor_b2)

    #layer
    import layer
    tensor_layer = layer.Layers()
    tensor_layer.append_affine(tensor_w1, tensor_b1)
    tensor_layer.append_relu()
    tensor_layer.append_affine(tensor_w2, tensor_b2)
    tensor_layer.append_softmax()

    numpy_layers = []
    numpy_layers.append(common.layers.Affine(numpy_w1, numpy_b1))
    numpy_layers.append(common.layers.Relu())
    numpy_layers.append(common.layers.Affine(numpy_w2, numpy_b2))
    numpy_last_layer = common.layers.SoftmaxWithLoss()

    for i in range(loop_count):
        #forward
        t = time.time()
        tensor_forward = tensor_layer.forward(tensor_x).copy()
        print("tensor forward time : ", time.time() - t)
        t = time.time()
        numpy_X = numpy_x
        for layer in numpy_layers:
            numpy_X = layer.forward(numpy_X)
        numpy_loss = numpy_last_layer.forward(numpy_X, numpy_t)
        numpy_forward = numpy_last_layer.y
        print("numpy forward time : ", time.time() - t)

        #backward
        t = time.time()
        tensor_dout = tensor_layer.backward(tensor_t)
        tensor_loss = tensor_layer.layers[-1].loss
        print("tensor backward time : ", time.time() - t)

        t = time.time()
        numpy_dout = numpy_last_layer.backward(1)
        for i in range(len(numpy_layers)):
            numpy_dout = numpy_layers[-1 - i].backward(numpy_dout)
        print("numpy backward time : ", time.time() - t)

        #update
        t = time.time()
        tensor_layer.update(tensor.Tensor([0.1], [1]))
        print("tensor update time : ", time.time() - t)
        t = time.time()
        numpy_layers[0].W -= 0.1 * numpy_layers[0].dW
        numpy_layers[0].b -= 0.1 * numpy_layers[0].db
        numpy_layers[2].W -= 0.1 * numpy_layers[2].dW
        numpy_layers[2].b -= 0.1 * numpy_layers[2].db
        print("numpy update time : ", time.time() - t)

        print("loss")
        print("tensor : ", tensor_loss)
        print("numpy : ", numpy_loss)
        print("forward")
        print(compare(tensor_forward, numpy_forward, error))
        print("backward")
        print(compare(tensor_dout, numpy_dout, error))

        print("update")
        print("new w1")
        print(compare(tensor_layer.layers[0].W, numpy_layers[0].W, error))
        print("new b1")
        print(compare(tensor_layer.layers[0].b, numpy_layers[0].b, error))
        print("new w2")
        print(compare(tensor_layer.layers[2].W, numpy_layers[2].W, error))
        print("new b2")
        print(compare(tensor_layer.layers[2].b, numpy_layers[2].b, error))