Exemple #1
0
    def custom_pack_batch(x):
        """Map-function."""
        (k1_packed, k1_segmentation, k1_position, k2_packed, k2_segmentation,
         k2_position) = (
             pack_sequences_ops.pack_sequences2(
                 # cast to int64 for compatibility with custom ops
                 tf.cast(x[k1], tf.int64),
                 tf.cast(x[k2], tf.int64),
                 length[k1],
                 length[k2]))
        packed = {
            k1: k1_packed,
            k1 + "_segmentation": k1_segmentation,
            k1 + "_position": k1_position,
        }
        if len(keys) == 2:
            packed.update({
                k2: k2_packed,
                k2 + "_segmentation": k2_segmentation,
                k2 + "_position": k2_position,
            })

        # cast back to int32
        for k, v in packed.items():
            packed[k] = tf.cast(v, tf.int32)

        return packed
Exemple #2
0
 def map_fn_custom(x):
   """Map-function."""
   (k1_packed, k1_segmengation, k1_position,
    k2_packed, k2_segmentation, k2_position) = (
        pack_sequences_ops.pack_sequences2(x[k1], x[k2], length))
   packed = {
       k1: k1_packed,
       k1 + "_segmentation": k1_segmengation,
       k1 + "_position": k1_position,
       k2: k2_packed,
       k2 + "_segmentation": k2_segmentation,
       k2 + "_position": k2_position,
   }
   return tf.data.Dataset.from_tensor_slices(packed)
Exemple #3
0
 def map_fn_custom(x):
     """Map-function."""
     (k1_packed, k1_segmengation, k1_position, k2_packed, k2_segmentation,
      k2_position) = (pack_sequences_ops.pack_sequences2(
          x[k1], x[k2], length[k1], length[k2]))
     packed = {
         k1: k1_packed,
         k1 + "_segmentation": k1_segmengation,
         k1 + "_position": k1_position,
     }
     if len(keys) == 2:
         packed.update({
             k2: k2_packed,
             k2 + "_segmentation": k2_segmentation,
             k2 + "_position": k2_position,
         })
     return packed
    def test_random_inputs(self):
        for _ in range(10):
            batch_size = np.random.randint(900, 1100, size=[])
            input_seqlen = np.random.randint(1, 10, size=[])
            target_seqlen = np.random.randint(1, 10, size=[])
            inputs_list = []
            targets_list = []
            for _ in range(batch_size):
                input_num_pads = np.random.randint(0, input_seqlen, size=[])
                input_pads = np.full([input_num_pads], 0, dtype=np.int32)
                inputs = np.random.randint(
                    1, 10, size=[input_seqlen - input_num_pads])
                inputs = np.concatenate([inputs, input_pads], axis=0)

                target_num_pads = np.random.randint(0, target_seqlen, size=[])
                target_pads = np.full([target_num_pads], 0, dtype=np.int32)
                targets = np.random.randint(
                    1, 10, size=[target_seqlen - target_num_pads])
                targets = np.concatenate([targets, target_pads], axis=0)

                inputs_list.append(inputs)
                targets_list.append(targets)
            input_maxlen = np.random.randint(input_seqlen,
                                             input_seqlen + 10,
                                             size=[])
            target_maxlen = np.random.randint(target_seqlen,
                                              target_seqlen + 10,
                                              size=[])
            (inputs_packed2, inputs_segmentation2, inputs_positions2,
             targets_packed2, targets_segmentation2,
             targets_positions2) = (pack_sequences_ops.pack_sequences2(
                 inputs_list, targets_list, input_maxlen, target_maxlen))
            (inputs_packed_k, inputs_segmentation_k, inputs_positions_k,
             targets_packed_k, targets_segmentation_k,
             targets_positions_k) = (_pack_sequences_k(inputs_list,
                                                       targets_list,
                                                       input_maxlen,
                                                       target_maxlen))

            self.assertAllEqual(inputs_packed2, inputs_packed_k)
            self.assertAllEqual(inputs_segmentation2, inputs_segmentation_k)
            self.assertAllEqual(inputs_positions2, inputs_positions_k)
            self.assertAllEqual(targets_packed2, targets_packed_k)
            self.assertAllEqual(targets_segmentation2, targets_segmentation_k)
            self.assertAllEqual(targets_positions2, targets_positions_k)
 def test_pack_sequences2(self):
     inputs = [
         [1, 2, 3],
         [4, 5, 0],
         [6, 0, 0],
     ]
     targets = [
         [10, 0, 0],
         [20, 30, 40],
         [50, 60, 0],
     ]
     max_length = 5
     (inputs_packed, inputs_segmentation, inputs_position, targets_packed,
      targets_segmentation,
      targets_position) = (pack_sequences_ops.pack_sequences2(
          inputs, targets, max_length, max_length))
     self.assertAllEqual(inputs_packed, [
         [1, 2, 3, 4, 5],
         [6, 0, 0, 0, 0],
     ])
     self.assertAllEqual(inputs_segmentation, [
         [1, 1, 1, 2, 2],
         [1, 0, 0, 0, 0],
     ])
     self.assertAllEqual(inputs_position, [
         [0, 1, 2, 0, 1],
         [0, 0, 0, 0, 0],
     ])
     self.assertAllEqual(targets_packed, [
         [10, 20, 30, 40, 0],
         [50, 60, 0, 0, 0],
     ])
     self.assertAllEqual(targets_segmentation, [
         [1, 2, 2, 2, 0],
         [1, 1, 0, 0, 0],
     ])
     self.assertAllEqual(targets_position, [
         [0, 0, 1, 2, 0],
         [0, 1, 0, 0, 0],
     ])