def vgg_net(weights, image):
    layers = ('conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1', 'conv2_1',
              'relu2_1', 'conv2_2', 'relu2_2', 'pool2', 'conv3_1', 'relu3_1',
              'conv3_2', 'relu3_2', 'conv3_3', 'relu3_3', 'conv3_4', 'relu3_4',
              'pool3', 'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3',
              'relu4_3', 'conv4_4', 'relu4_4', 'pool4', 'conv5_1', 'relu5_1',
              'conv5_2', 'relu5_2', 'conv5_3', 'relu5_3', 'conv5_4', 'relu5_4')

    net = {}
    current = image
    for i, name in enumerate(layers):
        kind = name[:4]
        if kind == 'conv':
            kernels, bias = weights[i][0][0][0][0]
            # matconvnet: weights are [width, height, in_channels, out_channels]
            # tensorflow: weights are [height, width, in_channels, out_channels]
            kernels = utils.get_variable(kernels, name=name + "_w")
            bias = utils.get_variable(bias.reshape(-1), name=name + "_b")
            current = utils.conv2d_basic(current, kernels, bias)
        elif kind == 'relu':
            current = tf.nn.relu(current, name=name)
            # if FLAGS.debug:
            #     utils.add_activation_summary(current)
        elif kind == 'pool':
            current = utils.avg_pool_2x2(current)
        net[name] = current

    return net
def vgg_net(weights, image):
    layers = (
        'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1',
        'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
        'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3',
        'relu3_3', 'conv3_4', 'relu3_4', 'pool3',
        'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3',
        'relu4_3', 'conv4_4', 'relu4_4', 'pool4',
        'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3',
        'relu5_3', 'conv5_4', 'relu5_4', 'pool5',
        'fc6', 'relu6', 'fc7', 'relu7', 'fc8', 'prob'
    )
    net = {}
    current = image
    for i, name in enumerate(layers):
        if len(name) >= 4:
            kind = name[:4]
        else:
            kind = name[:2]
        if kind == 'conv' or kind == 'fc':
            kernels, bias = weights[i][0][0][0][0]
            print('Kernel size:', kernels.shape)
            print('Bias size:', bias.shape)
            # matconvnet: weights are [width, height, in_channels, out_channels]
            # tensorflow: weights are [height, width, in_channels, out_channels]
            # kernels = utils.get_variable(np.transpose(kernels, (0, 1, 2, 3)), name=name + "_w")
            kernels = utils.get_variable(kernels, name=name + "_W")
            bias = utils.get_variable(bias.reshape(-1), name=name + "_b")
            if kind == 'conv':
                current = utils.conv2d_basic(current, kernels, bias)
            elif kind == 'fc':
                current = tf.nn.bias_add(tf.nn.conv2d(current, kernels, strides=[1, 1, 1, 1], padding="VALID"), bias)
        elif kind == 'relu':
            current = tf.nn.relu(current, name=name)
        elif kind == 'pool':
            current = utils.max_pool_2x2(current)
        elif kind == 'prob':
            current = tf.nn.softmax(current, name=name)
        net[name] = current
    return net
def inference(image, keep_prob):
    """
    Semantic segmentation network definition
    :param image: input image. Should have values in range 0-255
    :param keep_prob:
    :return:
    """
    print("setting up vgg pretrained conv layers ...")
    model_data = utils.get_model_data(model_dir)

    mean = model_data['normalization'][0][0][0]
    mean_pixel = np.mean(mean, axis=(0, 1))
    weights = np.squeeze(model_data['layers'])

    processed_image = utils.process_image(image, mean_pixel)

    with tf.variable_scope("inference"):
        image_net = vgg_net(weights, processed_image)
        conv_final_layer = image_net["conv5_3"]

        pool5 = utils.max_pool_2x2(conv_final_layer)

        W6 = utils.weight_variable([7, 7, 512, 4096], name="W6")
        b6 = utils.bias_variable([4096], name="b6")
        conv6 = utils.conv2d_basic(pool5, W6, b6)
        relu6 = tf.nn.relu(conv6, name="relu6")
        # if FLAGS.debug:
        #     utils.add_activation_summary(relu6)
        relu_dropout6 = tf.nn.dropout(relu6, keep_prob=keep_prob)

        W7 = utils.weight_variable([1, 1, 4096, 4096], name="W7")
        b7 = utils.bias_variable([4096], name="b7")
        conv7 = utils.conv2d_basic(relu_dropout6, W7, b7)
        relu7 = tf.nn.relu(conv7, name="relu7")
        # if FLAGS.debug:
        #     utils.add_activation_summary(relu7)
        relu_dropout7 = tf.nn.dropout(relu7, keep_prob=keep_prob)

        W8 = utils.weight_variable([1, 1, 4096, NUM_OF_CLASSES], name="W8")
        b8 = utils.bias_variable([NUM_OF_CLASSES], name="b8")
        conv8 = utils.conv2d_basic(relu_dropout7, W8, b8)
        annotation_pred1 = tf.argmax(conv8, axis=3, name="prediction1")

        # now to upscale to actual image size
        deconv_shape1 = image_net["pool4"].get_shape()
        W_t1 = utils.weight_variable(
            [4, 4, deconv_shape1[3].value, NUM_OF_CLASSES], name="W_t1")
        b_t1 = utils.bias_variable([deconv_shape1[3].value], name="b_t1")
        conv_t1 = utils.conv2d_transpose_strided(conv8,
                                                 W_t1,
                                                 b_t1,
                                                 output_shape=tf.shape(
                                                     image_net["pool4"]))
        fuse_1 = tf.add(conv_t1, image_net["pool4"], name="fuse_1")

        deconv_shape2 = image_net["pool3"].get_shape()
        W_t2 = utils.weight_variable(
            [4, 4, deconv_shape2[3].value, deconv_shape1[3].value],
            name="W_t2")
        b_t2 = utils.bias_variable([deconv_shape2[3].value], name="b_t2")
        conv_t2 = utils.conv2d_transpose_strided(fuse_1,
                                                 W_t2,
                                                 b_t2,
                                                 output_shape=tf.shape(
                                                     image_net["pool3"]))
        fuse_2 = tf.add(conv_t2, image_net["pool3"], name="fuse_2")

        shape = tf.shape(image)
        deconv_shape3 = tf.stack(
            [shape[0], shape[1], shape[2], NUM_OF_CLASSES])
        W_t3 = utils.weight_variable(
            [16, 16, NUM_OF_CLASSES, deconv_shape2[3].value], name="W_t3")
        b_t3 = utils.bias_variable([NUM_OF_CLASSES], name="b_t3")
        conv_t3 = utils.conv2d_transpose_strided(fuse_2,
                                                 W_t3,
                                                 b_t3,
                                                 output_shape=deconv_shape3,
                                                 stride=8)

        annotation_pred = tf.argmax(conv_t3, axis=3, name="prediction")

    return tf.expand_dims(annotation_pred, dim=3), conv_t3