def test_then_with_1(self):
        h1 = (tb.build(self.x).then_with(
            tf.device, "/cpu:0")(lambda x: x.softmax()).tensor())

        h2 = (tb.build(
            self.x).with_device("/cpu:0")(lambda x: x.softmax()).tensor())

        assert "CPU:0" in h1.device
        assert "CPU:0" in h2.device
    def test_branches(self):
        a = tb.build(tf.placeholder(tf.float32, shape=[None, 8]))
        b = tb.build(tf.placeholder(tf.float32, shape=[None, 8]))

        tree = tb.branches([a, b])

        assert type(tree) == tb.BuilderTree

        [a2, b2] = tree.builders()

        assert a.tensor() == a2.tensor() and b.tensor() == b2.tensor()
    def test_branches(self):
        a = tb.build(tf.placeholder(tf.float32, shape=[None, 8]))
        b = tb.build(tf.placeholder(tf.float32, shape=[None, 8]))

        tree = tb.branches([a, b])

        assert type(tree) == tb.BuilderTree

        [a2, b2] = tree.builders()

        assert a.tensor() == a2.tensor() and b.tensor() == b2.tensor()
    def test_then_with_1(self):
        h1 = (
            tb.build(self.x)
            .then_with(tf.device, "/cpu:0")(lambda x:
                x.softmax()
            )
            .tensor()
        )

        h2 = (
            tb.build(self.x)
            .with_device("/cpu:0")(lambda x:
                x.softmax()
            )
            .tensor()
        )

        assert "CPU:0" in h1.device
        assert "CPU:0" in h2.device
Exemple #5
0
##############################
##### GETTING STARTED
##############################

# TensorBuilder includes a set of primitives that you can use to wrap, around

import tensorflow as tf
from tensorflow.contrib import layers as layers
from tensorbuilder import tb

x = tf.placeholder(tf.float32, shape=[None, 40])
keep_prob = tf.placeholder(tf.float32)

h = (tb.build(x).map(layers.fully_connected,
                     100, activation_fn=tf.nn.tanh).map(
                         tf.nn.dropout,
                         keep_prob).map(layers.fully_connected,
                                        30,
                                        activation_fn=tf.nn.softmax).tensor())

print(h)

# The previous is equivalent to this next example using the `slim_patch`, which includes the `fully_connected` method that is taken from `tf.contrib.layers`

import tensorflow as tf
from tensorbuilder import tb
import tensorbuilder.slim_patch

x = tf.placeholder(tf.float32, shape=[None, 5])
keep_prob = tf.placeholder(tf.float32)

h = (
##############################
##### FUNCTIONS
##############################

##############################
##### builder
##############################

# The following example shows you how to construct a `tensorbuilder.tensorbuilder.Builder` from a tensorflow Tensor.

import tensorflow as tf
from tensorbuilder import tb

a = tf.placeholder(tf.float32, shape=[None, 8])
a_builder = tb.build(a)

print(a_builder)

# The previous is the same as

a = tf.placeholder(tf.float32, shape=[None, 8])
a_builder = a.builder()

print(a_builder)

##############################
##### branches
##############################

# Given a list of Builders and/or BuilderTrees you construct a `tensorbuilder.tensorbuilder.BuilderTree`.
    def test_unit(self):
        h = tf.nn.softmax(self.x)
        h2 = tb.build(self.x)._unit(h).tensor()

        assert h2 == h
 def test_build(self):
     builder = tb.build(self.x)
     assert type(builder) == tb.Builder
    def test_unit(self):
        h = tf.nn.softmax(self.x)
        h2 = tb.build(self.x)._unit(h).tensor()

        assert h2 == h
 def test_build(self):
     builder = tb.build(self.x)
     assert type(builder) == tb.Builder
##############################
##### FUNCTIONS
##############################


##############################
##### builder
##############################

# The following example shows you how to construct a `tensorbuilder.tensorbuilder.Builder` from a tensorflow Tensor.

import tensorflow as tf
from tensorbuilder import tb

a = tf.placeholder(tf.float32, shape=[None, 8])
a_builder = tb.build(a)

print(a_builder)

# The previous is the same as

a = tf.placeholder(tf.float32, shape=[None, 8])
a_builder = a.builder()

print(a_builder)

##############################
##### branches
##############################

# Given a list of Builders and/or BuilderTrees you construct a `tensorbuilder.tensorbuilder.BuilderTree`.