def linear_regression():
    x_train = np.asarray([1, 2, 3, 4, 5, 6, 7, 8, 9, 11])
    y_train = np.asarray([0.1, 0.2, 0.32, 0.43, 0.54, 0.65, 0.77, 0.88, 0.94, 1])
    n_sample = x_train.shape[0]
    x_ = tf.placeholder(tf.float32, name="x")
    y_ = tf.placeholder(tf.float32, name="y")
    w = tf.get_variable("weights", initializer=tf.constant(0.0))
    b = tf.get_variable("bias", initializer=tf.constant(0.0))
    y_predict = w * x_ + b
    loss = tf.square(y_ - y_predict, name='loss')
    optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001).minimize(loss)
    writer = tf.summary.FileWriter("./graphs", tf.get_default_graph())
    writer.close()
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for i in range(100):
            total_loss = 0
            for x, y in zip(x_train, y_train):
                _, _loss = sess.run([optimizer, loss], feed_dict={x_: x, y_: y})
                total_loss += _loss
            print(f"Epoch {i}: {total_loss / n_sample}")
        w_out, b_out = sess.run([w, b])
        y_predict = x_train * w_out + b_out
        for i, j in zip(y_predict, y_train):
            print(f"{i} : {j}")
        plt.plot(x_train, y_predict, "r-", label="predict")
        plt.plot(x_train, y_train, "go", label="data")
        plt.title("ABC")
        plt.xlabel("x")
        plt.ylabel("y")
        plt.show()
Exemple #2
0
 def __init__(self, nHidden, seqLen, guidence, newNet):
     self.nHidden = nHidden
     self.seqLen = seqLen
     tmp = self.getEmbedding()
     self.embedding = tf.Variable(tmp)
     with tf.variable_scope("training_variable"):
         self.weights = {
             "ATT":
             tf.Variable(
                 tf.truncated_normal(shape=[2 * self.nHidden, self.nHidden],
                                     stddev=0.08,
                                     name="text_att")),
             "ATTG":
             tf.Variable(
                 tf.truncated_normal(shape=[200, self.nHidden],
                                     stddev=0.08,
                                     name="text_att2")),
             "ATTS":
             tf.Variable(
                 tf.truncated_normal(shape=[self.nHidden, 1],
                                     stddev=0.08,
                                     name="text_att3")),
             "Fw1":
             tf.Variable(
                 tf.truncated_normal(shape=[200, self.nHidden],
                                     stddev=0.08,
                                     name="init_fw1")),
             "Fw2":
             tf.Variable(
                 tf.truncated_normal(shape=[200, self.nHidden],
                                     stddev=0.08,
                                     name="init_fw2")),
             "Bw1":
             tf.Variable(
                 tf.truncated_normal(shape=[200, self.nHidden],
                                     stddev=0.08,
                                     name="init_bw1")),
             "Bw2":
             tf.Variable(
                 tf.truncated_normal(shape=[200, self.nHidden],
                                     stddev=0.08,
                                     name="init_bw2")),
         }
         self.biases = {
             "Fw1":
             tf.Variable(
                 tf.constant(0.01, shape=[self.nHidden], name="init_Fw1")),
             "Fw2":
             tf.Variable(
                 tf.constant(0.01, shape=[self.nHidden], name="init_Fw2")),
             "Bw1":
             tf.Variable(
                 tf.constant(0.01, shape=[self.nHidden], name="init_Bw1")),
             "Bw2":
             tf.Variable(
                 tf.constant(0.01, shape=[self.nHidden], name="init_Bw2")),
         }
     self.X = tf.placeholder(tf.int32, [None, self.seqLen])
     self.pKeep = tf.placeholder(tf.float32)
     self.build(guidence, newNet)
Exemple #3
0
 def __init__(self):
     self.embedding = self.getEmb()
     self.embSize = self.embedding.shape[1]
     self.vocabSize = self.embedding.shape[0]
     self.x = tf.placeholder(tf.int32, [None, 5])
     with tf.variable_scope("training_variable"):
         self.weights = {
             "MLP1":
             tf.Variable(
                 tf.truncated_normal(
                     shape=[self.embSize,
                            int(self.embSize / 2)],
                     stddev=0.08)),
             "MLP2":
             tf.Variable(
                 tf.truncated_normal(shape=[int(self.embSize / 2), 1],
                                     stddev=0.08))
         }
         self.biases = {
             "MLP1":
             tf.Variable(
                 tf.constant(0.01,
                             shape=[int(self.embSize / 2)],
                             dtype=tf.float32)),
             "MLP2":
             tf.Variable(tf.constant(0.01, shape=[1], dtype=tf.float32))
         }
     self.inputEmb = tf.nn.embedding_lookup(self.embedding, self.x)
     p1 = tf.matmul(tf.reshape(self.inputEmb, [-1, self.embSize]),
                    self.weights["MLP1"]) + self.biases["MLP1"]
     p1 = tf.matmul(tf.nn.relu(p1),
                    self.weights["MLP2"]) + self.biases["MLP2"]
     p1 = tf.reshape(p1, [-1, 5])
     p1 = tf.reshape(tf.nn.softmax(p1), [-1, 1, 5])
     self.finalState = tf.reshape(tf.matmul(p1, self.inputEmb),
                                  [-1, self.embSize])
Exemple #4
0
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

    print(accuracy.eval({x: mnist.test.images, y_: mnist.test.labels}, sess))

# Store variable
_W = W.eval(sess)
_b = b.eval(sess)

sess.close()

# Create new graph for exporting
g_2 = tf.Graph()
with g_2.as_default():
    # Reconstruct graph
    x_2 = tf.placeholder("float", [None, 784], name="input")
    W_2 = tf.constant(_W, name="constant_W")
    b_2 = tf.constant(_b, name="constant_b")
    y_2 = tf.nn.softmax(tf.matmul(x_2, W_2) + b_2, name="output")

    sess_2 = tf.Session()

    init_2 = tf.initialize_all_variables()
    sess_2.run(init_2)

    graph_def = g_2.as_graph_def()

    tf.train.write_graph(graph_def,
                         './tmp/beginner-export',
                         'beginner-graph.pb',
                         as_text=False)
Exemple #5
0
    return x


data = readData()
print(data.shape)


#PCA
def pca(x, dim=2):
    '''
        x:输入矩阵
        dim:降维之后的维度数
    '''
    with tf.name_scope("PCA"):

        m, n = tf.to_float(x.get_shape()[0]), tf.to_int32(x.get_shape()[1])
        assert not tf.assert_less(dim, n)
        mean = tf.reduce_mean(x, axis=1)
        x_new = x - tf.reshape(mean, (-1, 1))
        cov = tf.matmul(x_new, x_new, transpose_a=True) / (m - 1)
        e, v = tf.linalg.eigh(cov, name="eigh")
        e_index_sort = tf.math.top_k(e, sorted=True, k=dim)[1]
        v_new = tf.gather(v, indices=e_index_sort)
        pca = tf.matmul(x_new, v_new, transpose_b=True)
    return pca


pca_data = tf.constant(np.reshape(data, (data.shape[0], -1)), dtype=tf.float32)
pca_data = pca(pca_data, dim=2)
plt.scatter(pca_data[:, 0], pca_data[:, 1], c='black')
plt.show()
def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)
_b_conv1 = b_conv1.eval(sess)
_W_conv2 = W_conv2.eval(sess)
_b_conv2 = b_conv2.eval(sess)
_W_fc1 = W_fc1.eval(sess)
_b_fc1 = b_fc1.eval(sess)
_W_fc2 = W_fc2.eval(sess)
_b_fc2 = b_fc2.eval(sess)

sess.close()

# Create new graph for exporting
g_2 = tf.Graph()
with g_2.as_default():
    x_2 = tf.placeholder("float", shape=[None, 784], name="input")

    W_conv1_2 = tf.constant(_W_conv1, name="constant_W_conv1")
    b_conv1_2 = tf.constant(_b_conv1, name="constant_b_conv1")
    x_image_2 = tf.reshape(x_2, [-1, 28, 28, 1])
    h_conv1_2 = tf.nn.relu(conv2d(x_image_2, W_conv1_2) + b_conv1_2)
    h_pool1_2 = max_pool_2x2(h_conv1_2)

    W_conv2_2 = tf.constant(_W_conv2, name="constant_W_conv2")
    b_conv2_2 = tf.constant(_b_conv2, name="constant_b_conv2")
    h_conv2_2 = tf.nn.relu(conv2d(h_pool1_2, W_conv2_2) + b_conv2_2)
    h_pool2_2 = max_pool_2x2(h_conv2_2)

    W_fc1_2 = tf.constant(_W_fc1, name="constant_W_fc1")
    b_fc1_2 = tf.constant(_b_fc1, name="constant_b_fc1")
    h_pool2_flat_2 = tf.reshape(h_pool2_2, [-1, 7 * 7 * 64])
    h_fc1_2 = tf.nn.relu(tf.matmul(h_pool2_flat_2, W_fc1_2) + b_fc1_2)
Exemple #8
0
    def __init__(self, nHidden, seqLen):
        self.representation_score = {}
        self.y = tf.placeholder(tf.float32, shape=[None, 1])
        self.extractFeature = ExtractFeature.ExtractFeature()
        self.imageFeature = ImageFeature.ImageFeature()
        newNet = tf.reduce_mean(self.imageFeature.outputLS, axis=0)
        self.textFeature = TextFeature.TextFeature(
            nHidden, seqLen, self.extractFeature.finalState, newNet)
        self.l2_para = 1e-7
        with tf.variable_scope("training_variable"):

            self.weights = {
                "MLP1":
                tf.Variable(
                    tf.truncated_normal(shape=[512, 256],
                                        stddev=0.08,
                                        name="MLP1_W")),
                "MLP2":
                tf.Variable(
                    tf.truncated_normal(shape=[256, 1],
                                        stddev=0.08,
                                        name="MLP2_W")),
                "ATT_attr1_1":
                tf.Variable(
                    tf.truncated_normal(shape=[
                        self.imageFeature.defaultFeatureSize +
                        self.extractFeature.embSize,
                        int(self.imageFeature.defaultFeatureSize / 2 +
                            self.extractFeature.embSize / 2)
                    ],
                                        stddev=0.08,
                                        name="ATT_attr1_1")),
                "ATT_attr1_2":
                tf.Variable(
                    tf.truncated_normal(shape=[
                        self.textFeature.nHidden * 2 +
                        self.extractFeature.embSize,
                        int(self.textFeature.nHidden +
                            self.extractFeature.embSize / 2)
                    ],
                                        stddev=0.08,
                                        name="ATT_attr1_2")),
                "ATT_attr1_3":
                tf.Variable(
                    tf.truncated_normal(shape=[
                        2 * self.extractFeature.embSize,
                        self.extractFeature.embSize
                    ],
                                        stddev=0.08,
                                        name="ATT_attr1_3")),
                "ATT_attr2_1":
                tf.Variable(
                    tf.truncated_normal(shape=[
                        int(self.imageFeature.defaultFeatureSize / 2 +
                            self.extractFeature.embSize / 2), 1
                    ],
                                        stddev=0.08,
                                        name="ATT_attr2_1")),
                "ATT_attr2_2":
                tf.Variable(
                    tf.truncated_normal(shape=[
                        int(self.textFeature.nHidden +
                            self.extractFeature.embSize / 2), 1
                    ],
                                        stddev=0.08,
                                        name="ATT_attr2_2")),
                "ATT_attr2_3":
                tf.Variable(
                    tf.truncated_normal(shape=[self.extractFeature.embSize, 1],
                                        stddev=0.08,
                                        name="ATT_attr2_3")),
                "ATT_img1_1":
                tf.Variable(
                    tf.truncated_normal(shape=[
                        self.imageFeature.defaultFeatureSize +
                        self.textFeature.nHidden * 2,
                        int(self.imageFeature.defaultFeatureSize / 2 +
                            self.textFeature.nHidden)
                    ],
                                        stddev=0.08,
                                        name="ATT_image1_1")),
                "ATT_img1_2":
                tf.Variable(
                    tf.truncated_normal(shape=[
                        self.imageFeature.defaultFeatureSize +
                        self.extractFeature.embSize,
                        int(self.imageFeature.defaultFeatureSize / 2 +
                            self.extractFeature.embSize / 2)
                    ],
                                        stddev=0.08,
                                        name="ATT_image1_2")),
                "ATT_img1_3":
                tf.Variable(
                    tf.truncated_normal(shape=[
                        self.imageFeature.defaultFeatureSize * 2,
                        self.imageFeature.defaultFeatureSize
                    ],
                                        stddev=0.08,
                                        name="ATT_image1_3")),
                "ATT_img2_1":
                tf.Variable(
                    tf.truncated_normal(shape=[
                        int(self.imageFeature.defaultFeatureSize / 2 +
                            self.textFeature.nHidden), 1
                    ],
                                        stddev=0.08,
                                        name="ATT_image2_1")),
                "ATT_img2_2":
                tf.Variable(
                    tf.truncated_normal(shape=[
                        int(self.imageFeature.defaultFeatureSize / 2 +
                            self.extractFeature.embSize / 2), 1
                    ],
                                        stddev=0.08,
                                        name="ATT_image2_2")),
                "ATT_img2_3":
                tf.Variable(
                    tf.truncated_normal(
                        shape=[self.imageFeature.defaultFeatureSize, 1],
                        stddev=0.08,
                        name="ATT_image2_3")),
                "ATT_text1_1":
                tf.Variable(
                    tf.truncated_normal(shape=[
                        self.imageFeature.defaultFeatureSize +
                        self.textFeature.nHidden * 2,
                        int(self.imageFeature.defaultFeatureSize / 2 +
                            self.textFeature.nHidden)
                    ],
                                        stddev=0.08,
                                        name="ATT_text1_1")),
                "ATT_text1_2":
                tf.Variable(
                    tf.truncated_normal(shape=[
                        self.textFeature.nHidden * 2 +
                        self.extractFeature.embSize,
                        int(self.textFeature.nHidden +
                            self.extractFeature.embSize / 2)
                    ],
                                        stddev=0.08,
                                        name="ATT_text1_2")),
                "ATT_text1_3":
                tf.Variable(
                    tf.truncated_normal(shape=[
                        self.textFeature.nHidden * 4,
                        self.textFeature.nHidden * 2
                    ],
                                        stddev=0.08,
                                        name="ATT_text1_3")),
                "ATT_text2_1":
                tf.Variable(
                    tf.truncated_normal(shape=[
                        int(self.imageFeature.defaultFeatureSize / 2 +
                            self.textFeature.nHidden), 1
                    ],
                                        stddev=0.08,
                                        name="ATT_text2_1")),
                "ATT_text2_2":
                tf.Variable(
                    tf.truncated_normal(shape=[
                        int(self.textFeature.nHidden +
                            self.extractFeature.embSize / 2), 1
                    ],
                                        stddev=0.08,
                                        name="ATT_text2_2")),
                "ATT_text2_3":
                tf.Variable(
                    tf.truncated_normal(
                        shape=[self.textFeature.nHidden * 2, 1],
                        stddev=0.08,
                        name="ATT_text2_3")),
                "ATT_WI1":
                tf.Variable(
                    tf.truncated_normal(
                        shape=[self.imageFeature.defaultFeatureSize, 512],
                        stddev=0.08,
                        name="ATT_WI")),
                "ATT_WT1":
                tf.Variable(
                    tf.truncated_normal(shape=[2 * nHidden, 512],
                                        stddev=0.08,
                                        name="ATT_WT")),
                "ATT_WA1":
                tf.Variable(
                    tf.truncated_normal(shape=[200, 512],
                                        stddev=0.08,
                                        name="ATT_WA")),
                "ATT_WI2":
                tf.Variable(
                    tf.truncated_normal(
                        shape=[self.imageFeature.defaultFeatureSize, 512],
                        stddev=0.08,
                        name="ATT_WI2")),
                "ATT_WT2":
                tf.Variable(
                    tf.truncated_normal(shape=[2 * nHidden, 512],
                                        stddev=0.08,
                                        name="ATT_WT2")),
                "ATT_WA2":
                tf.Variable(
                    tf.truncated_normal(shape=[200, 512],
                                        stddev=0.08,
                                        name="ATT_WA2")),
                "ATT_WF_1":
                tf.Variable(
                    tf.truncated_normal(shape=[512, 1],
                                        stddev=0.08,
                                        name="ATT_WF_1")),
                "ATT_WF_2":
                tf.Variable(
                    tf.truncated_normal(shape=[512, 1],
                                        stddev=0.08,
                                        name="ATT_WF_2")),
                "ATT_WF_3":
                tf.Variable(
                    tf.truncated_normal(shape=[512, 1],
                                        stddev=0.08,
                                        name="ATT_WF_3")),
            }
            self.biases = {
                "MLP1":
                tf.Variable(
                    tf.constant(0.01,
                                shape=[256],
                                dtype=tf.float32,
                                name="MLP1_b")),
                "MLP2":
                tf.Variable(
                    tf.constant(0.01,
                                shape=[1],
                                dtype=tf.float32,
                                name="MLP2_b")),
                "ATT_attr1_1":
                tf.Variable(
                    tf.constant(
                        0.01,
                        shape=[
                            int(self.imageFeature.defaultFeatureSize / 2 +
                                self.extractFeature.embSize / 2)
                        ],
                        name="ATT_attr1_1")),
                "ATT_attr1_2":
                tf.Variable(
                    tf.constant(0.01,
                                shape=[
                                    int(self.textFeature.nHidden +
                                        self.extractFeature.embSize / 2)
                                ],
                                name="ATT_attr1_2")),
                "ATT_attr1_3":
                tf.Variable(
                    tf.constant(0.01,
                                shape=[self.extractFeature.embSize],
                                name="ATT_attr1_3")),
                "ATT_attr2_1":
                tf.Variable(tf.constant(0.01, shape=[1], name="ATT_attr2_1")),
                "ATT_attr2_2":
                tf.Variable(tf.constant(0.01, shape=[1], name="ATT_attr2_2")),
                "ATT_attr2_3":
                tf.Variable(tf.constant(0.01, shape=[1], name="ATT_attr2_3")),
                "ATT_img1_1":
                tf.Variable(
                    tf.constant(
                        0.01,
                        shape=[
                            int(self.imageFeature.defaultFeatureSize / 2 +
                                self.textFeature.nHidden)
                        ],
                        name="ATT_image1_1")),
                "ATT_img1_2":
                tf.Variable(
                    tf.constant(
                        0.01,
                        shape=[
                            int(self.imageFeature.defaultFeatureSize / 2 +
                                self.extractFeature.embSize / 2)
                        ],
                        name="ATT_image1_2")),
                "ATT_img1_3":
                tf.Variable(
                    tf.constant(0.01,
                                shape=[self.imageFeature.defaultFeatureSize],
                                name="ATT_image1_3")),
                "ATT_img2_1":
                tf.Variable(tf.constant(0.01, shape=[1], name="ATT_image2_1")),
                "ATT_img2_2":
                tf.Variable(tf.constant(0.01, shape=[1], name="ATT_image2_2")),
                "ATT_img2_3":
                tf.Variable(tf.constant(0.01, shape=[1], name="ATT_image2_3")),
                "ATT_text1_1":
                tf.Variable(
                    tf.constant(
                        0.01,
                        shape=[
                            int(self.imageFeature.defaultFeatureSize / 2 +
                                self.textFeature.nHidden)
                        ],
                        name="ATT_text1_1")),
                "ATT_text1_2":
                tf.Variable(
                    tf.constant(0.01,
                                shape=[
                                    int(self.textFeature.nHidden +
                                        self.extractFeature.embSize / 2)
                                ],
                                name="ATT_text1_2")),
                "ATT_text1_3":
                tf.Variable(
                    tf.constant(0.01,
                                shape=[self.textFeature.nHidden * 2],
                                name="ATT_text1_3")),
                "ATT_text2_1":
                tf.Variable(tf.constant(0.01, shape=[1], name="ATT_text2_1")),
                "ATT_text2_2":
                tf.Variable(tf.constant(0.01, shape=[1], name="ATT_text2_2")),
                "ATT_text2_3":
                tf.Variable(tf.constant(0.01, shape=[1], name="ATT_text2_3")),
                "ATT_WW":
                tf.Variable(tf.constant(0.01, shape=[512], name="ATT_WW")),
                "ATT_WI":
                tf.Variable(tf.constant(0.01, shape=[512], name="ATT_WI")),
                "ATT_WT":
                tf.Variable(tf.constant(0.01, shape=[512], name="ATT_WT")),
                "ATT_WI1":
                tf.Variable(tf.constant(0.01, shape=[512], name="ATT_WI1")),
                "ATT_WT1":
                tf.Variable(tf.constant(0.01, shape=[512], name="ATT_WT1")),
                "ATT_WA":
                tf.Variable(tf.constant(0.01, shape=[512], name="ATT_WA")),
                "ATT_WF_1":
                tf.Variable(tf.constant(0.01, shape=[1], name="ATT_WF_1")),
                "ATT_WF_2":
                tf.Variable(tf.constant(0.01, shape=[1], name="ATT_WF_2")),
                "ATT_WF_3":
                tf.Variable(tf.constant(0.01, shape=[1], name="ATT_WF_3")),
            }
        print("newnet dimension :", newNet)

        imageVec = self.Attention(newNet, self.imageFeature.outputLS,
                                  self.textFeature.RNNState,
                                  self.extractFeature.finalState, "ATT_img1",
                                  "ATT_img2", 196, True)
        textVec = self.Attention(self.textFeature.RNNState,
                                 self.textFeature.outputs, newNet,
                                 self.extractFeature.finalState, "ATT_text1",
                                 "ATT_text2", self.textFeature.seqLen, False)
        attrVec = self.Attention(self.extractFeature.finalState,
                                 self.extractFeature.inputEmb, newNet,
                                 self.textFeature.RNNState, "ATT_attr1",
                                 "ATT_attr2", 5, False)

        attHidden = tf.tanh(
            tf.matmul(imageVec, self.weights["ATT_WI1"]) +
            self.biases["ATT_WI1"])
        attHidden2 = tf.tanh(
            tf.matmul(textVec, self.weights["ATT_WT1"]) +
            self.biases["ATT_WT1"])
        attHidden3 = tf.tanh(
            tf.matmul(attrVec, self.weights["ATT_WA1"]) +
            self.biases["ATT_WW"])
        scores1 = tf.matmul(attHidden,
                            self.weights["ATT_WF_1"]) + self.biases["ATT_WF_1"]
        scores2 = tf.matmul(attHidden2,
                            self.weights["ATT_WF_2"]) + self.biases["ATT_WF_2"]
        scores3 = tf.matmul(attHidden3,
                            self.weights["ATT_WF_3"]) + self.biases["ATT_WF_3"]
        scoreLS = [scores1, scores2, scores3]
        scoreLS = tf.nn.softmax(scoreLS, dim=0)
        imageVec = tf.tanh(
            tf.matmul(imageVec, self.weights["ATT_WI2"]) +
            self.biases["ATT_WI"])
        textVec = tf.tanh(
            tf.matmul(textVec, self.weights["ATT_WT2"]) +
            self.biases["ATT_WT"])
        attrVec = tf.tanh(
            tf.matmul(attrVec, self.weights["ATT_WA2"]) +
            self.biases["ATT_WA"])
        self.concatInput = scoreLS[0] * imageVec + scoreLS[
            1] * textVec + scoreLS[2] * attrVec