Exemple #1
0
def update_metainfo_op_with_vars(metainfo_ph: tf.Tensor, nz_ph: tf.Tensor,
                                 metainfo_var: tf.Variable,
                                 nz_var: tf.Variable) -> tf.Operation:
    assign_nz = nz_var.assign(nz_ph)
    assign_meta = metainfo_var.assign(metainfo_ph)

    with tf.control_dependencies([assign_nz, assign_meta]):
        update_op = tf.no_op()

    return update_op
Exemple #2
0
 def _get_update(self, variable: tf.Variable, gradient: tf.Tensor,
                 step_size: tf.Tensor) -> List[tf.Operation]:
     with tf.variable_scope(variable.op.name):
         gradient = tf.cast(gradient, tf.float32)
         state_m = tf.get_variable(
             "adam_m",
             shape=variable.shape,
             dtype=variable.dtype,
             initializer=tf.zeros_initializer(),
             trainable=False,
         )
         updated_m = (self.beta1 * tf.cast(state_m, tf.float32) +
                      (1 - self.beta1) * gradient)
         state_v = tf.get_variable(
             "adam_v",
             shape=variable.shape,
             dtype=tf.float32,
             initializer=tf.zeros_initializer(),
             trainable=False,
         )
         updated_v = self.beta2 * state_v + (1 - self.beta2) * (gradient**2)
         delta = step_size * updated_m / (tf.sqrt(updated_v) + self.epsilon)
         updated_variable = tf.cast(variable, tf.float32) - delta
         return [
             variable.assign(tf.cast(updated_variable, variable.dtype)),
             state_m.assign(tf.cast(updated_m, state_m.dtype)),
             state_v.assign(updated_v),
         ]
Exemple #3
0
def update_metainfo_op_with_vars(metainfo_ph: tf.Tensor, nz_ph: tf.Tensor,
                                 metainfo_var: tf.Variable,
                                 nz_var: tf.Variable) -> tf.Operation:
    """Returns an op that can be used to update the metainfo on device

    :param metainfo_ph: Metainfo placeholder
    :param nz_ph: Nonzero-values placeholder
    :param metainfo_var: Metainfo variable
    :param nz_var: Nonzero-values variable
    """
    assign_nz = nz_var.assign(nz_ph)
    assign_meta = metainfo_var.assign(metainfo_ph)

    with tf.control_dependencies([assign_nz, assign_meta]):
        update_op = tf.no_op()

    return update_op