def test_sqrt_to_dense(self):
   with self.test_session():
     chol = self._random_cholesky_array((2, 3, 3))
     chol_2 = chol.copy()
     chol_2[0, 0, 2] = 1000  # Make sure upper triangular part makes no diff.
     operator = operator_pd_cholesky.OperatorPDCholesky(chol_2)
     self.assertAllClose(chol, operator.sqrt_to_dense().eval())
 def testNonPositiveDefiniteMatrixDoesNotRaiseIfNotVerifyPd(self):
     # Singlular matrix with one positive eigenvalue and one zero eigenvalue.
     with self.test_session():
         lower_mat = [[1.0, 0.0], [2.0, 0.0]]
         operator = operator_pd_cholesky.OperatorPDCholesky(lower_mat,
                                                            verify_pd=False)
         operator.to_dense().eval()  # Should not raise.
 def test_non_positive_definite_matrix_raises(self):
   # Singlular matrix with one positive eigenvalue and one zero eigenvalue.
   with self.test_session():
     lower_mat = [[1.0, 0.0], [2.0, 0.0]]
     operator = operator_pd_cholesky.OperatorPDCholesky(lower_mat)
     with self.assertRaisesOpError('x > 0 did not hold'):
       operator.to_dense().eval()
Exemple #4
0
  def __init__(
      self,
      mu,
      chol,
      strict=True,
      strict_statistics=True,
      name="MultivariateNormalCholesky"):
    """Multivariate Normal distributions on `R^k`.

    User must provide means `mu` and `chol` which holds the (batch) Cholesky
    factors `S`, such that the covariance of each batch member is `S S^*`.

    Args:
      mu: `(N+1)-D`  `float` or `double` tensor with shape `[N1,...,Nb, k]`,
        `b >= 0`.
      chol: `(N+2)-D` `Tensor` with same `dtype` as `mu` and shape
        `[N1,...,Nb, k, k]`.
      strict: Whether to validate input with asserts.  If `strict` is `False`,
        and the inputs are invalid, correct behavior is not guaranteed.
      strict_statistics:  Boolean, default True.  If True, raise an exception if
        a statistic (e.g. mean/mode/etc...) is undefined for any batch member.
        If False, batch members with valid parameters leading to undefined
        statistics will return NaN for this statistic.
      name: The name to give Ops created by the initializer.

    Raises:
      TypeError: If `mu` and `chol` are different dtypes.
    """
    cov = operator_pd_cholesky.OperatorPDCholesky(chol, verify_pd=strict)
    super(MultivariateNormalCholesky, self).__init__(
        mu, cov, strict_statistics=strict_statistics, strict=strict, name=name)
 def test_non_positive_definite_matrix_does_not_raise_if_not_verify_pd(self):
   # Singlular matrix with one positive eigenvalue and one zero eigenvalue.
   with self.test_session():
     lower_mat = [[1.0, 0.0], [2.0, 0.0]]
     operator = operator_pd_cholesky.OperatorPDCholesky(
         lower_mat, verify_pd=False)
     operator.to_dense().eval()  # Should not raise.
 def testNotHavingTwoIdenticalLastDimsRaises(self):
     # Unless the last two dims are equal, this cannot represent a matrix, and it
     # should raise.
     with self.test_session():
         batch_vec = [[1.0], [2.0]]  # shape 2 x 1
         with self.assertRaisesOpError("x == y did not hold"):
             operator = operator_pd_cholesky.OperatorPDCholesky(batch_vec)
             operator.to_dense().eval()
 def test_shape(self):
   # All other shapes are defined by the abstractmethod shape, so we only need
   # to test this.
   with self.test_session():
     for shape in [(3, 3), (2, 3, 3), (1, 2, 3, 3)]:
       chol = self._random_cholesky_array(shape)
       operator = operator_pd_cholesky.OperatorPDCholesky(chol)
       self.assertAllEqual(shape, operator.shape().eval())
 def test_not_having_two_identical_last_dims_raises(self):
   # Unless the last two dims are equal, this cannot represent a matrix, and it
   # should raise.
   with self.test_session():
     batch_vec = [[1.0], [2.0]]  # shape 2 x 1
     with self.assertRaisesRegexp(ValueError, '.*Dimensions.*'):
       operator = operator_pd_cholesky.OperatorPDCholesky(batch_vec)
       operator.to_dense().eval()
  def test_log_det(self):
    with self.test_session():
      batch_shape = ()
      for k in [1, 4]:
        chol_shape = batch_shape + (k, k)
        chol = self._random_cholesky_array(chol_shape)
        operator = operator_pd_cholesky.OperatorPDCholesky(chol)
        log_det = operator.log_det()
        expected_log_det = np.log(np.prod(np.diag(chol))**2)

        self.assertEqual(batch_shape, log_det.get_shape())
        self.assertAllClose(expected_log_det, log_det.eval())
  def test_log_det_batch_matrix(self):
    with self.test_session():
      batch_shape = (2, 3)
      for k in [1, 4]:
        chol_shape = batch_shape + (k, k)
        chol = self._random_cholesky_array(chol_shape)
        operator = operator_pd_cholesky.OperatorPDCholesky(chol)
        log_det = operator.log_det()

        self.assertEqual(batch_shape, log_det.get_shape())

        # Test the log-determinant of the [1, 1] matrix.
        chol_11 = chol[1, 1, :, :]
        expected_log_det = np.log(np.prod(np.diag(chol_11))**2)
        self.assertAllClose(expected_log_det, log_det.eval()[1, 1])
  def test_matmul_batch_matrix(self):
    with self.test_session():
      batch_shape = (2, 3)
      for k in [1, 4]:
        x_shape = batch_shape + (k, 5)
        x = self._rng.rand(*x_shape)
        chol_shape = batch_shape + (k, k)
        chol = self._random_cholesky_array(chol_shape)
        matrix = tf.batch_matmul(chol, chol, adj_y=True)

        operator = operator_pd_cholesky.OperatorPDCholesky(chol)

        expected = tf.batch_matmul(matrix, x)

        self.assertEqual(expected.get_shape(), operator.matmul(x).get_shape())
        self.assertAllClose(expected.eval(), operator.matmul(x).eval())
  def test_sqrt_matmul_single_matrix(self):
    with self.test_session():
      batch_shape = ()
      for k in [1, 4]:
        x_shape = batch_shape + (k, 3)
        x = self._rng.rand(*x_shape)
        chol_shape = batch_shape + (k, k)
        chol = self._random_cholesky_array(chol_shape)

        operator = operator_pd_cholesky.OperatorPDCholesky(chol)

        sqrt_operator_times_x = operator.sqrt_matmul(x)
        expected = tf.batch_matmul(chol, x)

        self.assertEqual(expected.get_shape(),
                         sqrt_operator_times_x.get_shape())
        self.assertAllClose(expected.eval(), sqrt_operator_times_x.eval())
  def testSqrtMatmulBatchMatrixWithTranspose(self):
    with self.test_session():
      batch_shape = (2, 3)
      for k in [1, 4]:
        x_shape = batch_shape + (5, k)
        x = self._rng.rand(*x_shape)
        chol_shape = batch_shape + (k, k)
        chol = self._random_cholesky_array(chol_shape)

        operator = operator_pd_cholesky.OperatorPDCholesky(chol)

        sqrt_operator_times_x = operator.sqrt_matmul(x, transpose_x=True)
        # tf.batch_matmul is defined x * y, so "y" is on the right, not "x".
        expected = math_ops.matmul(chol, x, adjoint_b=True)

        self.assertEqual(expected.get_shape(),
                         sqrt_operator_times_x.get_shape())
        self.assertAllClose(expected.eval(), sqrt_operator_times_x.eval())
  def test_matmul_batch_matrix_with_transpose(self):
    with self.test_session():
      batch_shape = (2, 3)
      for k in [1, 4]:
        x_shape = batch_shape + (5, k)
        x = self._rng.rand(*x_shape)
        chol_shape = batch_shape + (k, k)
        chol = self._random_cholesky_array(chol_shape)
        matrix = tf.batch_matmul(chol, chol, adj_y=True)

        operator = operator_pd_cholesky.OperatorPDCholesky(chol)
        operator_times_x = operator.matmul(x, transpose_x=True)

        # tf.batch_matmul is defined x * y, so "y" is on the right, not "x".
        expected = tf.batch_matmul(matrix, x, adj_y=True)

        self.assertEqual(expected.get_shape(), operator_times_x.get_shape())
        self.assertAllClose(expected.eval(), operator_times_x.eval())
Exemple #15
0
    def __init__(self,
                 mu,
                 chol,
                 validate_args=False,
                 allow_nan_stats=True,
                 name="MultivariateNormalCholesky"):
        """Multivariate Normal distributions on `R^k`.

    User must provide means `mu` and `chol` which holds the (batch) Cholesky
    factors, such that the covariance of each batch member is `chol chol^T`.

    Args:
      mu: `(N+1)-D` floating point tensor with shape `[N1,...,Nb, k]`,
        `b >= 0`.
      chol: `(N+2)-D` `Tensor` with same `dtype` as `mu` and shape
        `[N1,...,Nb, k, k]`.  The upper triangular part is ignored (treated as
        though it is zero), and the diagonal must be positive.
      validate_args: `Boolean`, default `False`.  Whether to validate input
        with asserts.  If `validate_args` is `False`, and the inputs are
        invalid, correct behavior is not guaranteed.
      allow_nan_stats: `Boolean`, default `True`.  If `False`, raise an
        exception if a statistic (e.g. mean/mode/etc...) is undefined for any
        batch member If `True`, batch members with valid parameters leading to
        undefined statistics will return NaN for this statistic.
      name: The name to give Ops created by the initializer.

    Raises:
      TypeError: If `mu` and `chol` are different dtypes.
    """
        parameters = locals()
        parameters.pop("self")
        with ops.name_scope(name, values=[chol]) as ns:
            cov = operator_pd_cholesky.OperatorPDCholesky(
                chol, verify_pd=validate_args)
        super(MultivariateNormalCholesky,
              self).__init__(mu,
                             cov,
                             allow_nan_stats=allow_nan_stats,
                             validate_args=validate_args,
                             name=ns)
        self._parameters = parameters
Exemple #16
0
    def __init__(self,
                 df,
                 scale,
                 cholesky_input_output_matrices=False,
                 validate_args=False,
                 allow_nan_stats=True,
                 name="WishartCholesky"):
        """Construct Wishart distributions.

    Args:
      df: `float` or `double` `Tensor`. Degrees of freedom, must be greater than
        or equal to dimension of the scale matrix.
      scale: `float` or `double` `Tensor`. The Cholesky factorization of
        the symmetric positive definite scale matrix of the distribution.
      cholesky_input_output_matrices: Python `bool`. Any function which whose
        input or output is a matrix assumes the input is Cholesky and returns a
        Cholesky factored matrix. Example `log_prob` input takes a Cholesky and
        `sample_n` returns a Cholesky when
        `cholesky_input_output_matrices=True`.
      validate_args: Python `bool`, default `False`. When `True` distribution
        parameters are checked for validity despite possibly degrading runtime
        performance. When `False` invalid inputs may silently render incorrect
        outputs.
      allow_nan_stats: Python `bool`, default `True`. When `True`, statistics
        (e.g., mean, mode, variance) use the value "`NaN`" to indicate the
        result is undefined. When `False`, an exception is raised if one or
        more of the statistic's batch members are undefined.
      name: Python `str` name prefixed to Ops created by this class.
    """
        parameters = locals()
        with ops.name_scope(name, values=[scale]):
            super(WishartCholesky, self).__init__(
                df=df,
                scale_operator_pd=operator_pd_cholesky.OperatorPDCholesky(
                    scale, verify_pd=validate_args),
                cholesky_input_output_matrices=cholesky_input_output_matrices,
                validate_args=validate_args,
                allow_nan_stats=allow_nan_stats,
                name=name)
        self._parameters = parameters
Exemple #17
0
  def __init__(self,
               df,
               scale,
               cholesky_input_output_matrices=False,
               validate_args=False,
               allow_nan_stats=True,
               name="WishartCholesky"):
    """Construct Wishart distributions.

    Args:
      df: `float` or `double` `Tensor`. Degrees of freedom, must be greater than
        or equal to dimension of the scale matrix.
      scale: `float` or `double` `Tensor`. The Cholesky factorization of
        the symmetric positive definite scale matrix of the distribution.
      cholesky_input_output_matrices: `Boolean`. Any function which whose input
        or output is a matrix assumes the input is Cholesky and returns a
        Cholesky factored matrix. Example`log_pdf` input takes a Cholesky and
        `sample_n` returns a Cholesky when
        `cholesky_input_output_matrices=True`.
      validate_args: `Boolean`, default `False`.  Whether to validate input
        with asserts. If `validate_args` is `False`, and the inputs are invalid,
        correct behavior is not guaranteed.
      allow_nan_stats: `Boolean`, default `True`. If `False`, raise an
        exception if a statistic (e.g., mean, mode) is undefined for any batch
        member. If True, batch members with valid parameters leading to
        undefined statistics will return `NaN` for this statistic.
      name: The name scope to give class member ops.
    """
    parameters = locals()
    parameters.pop("self")
    with ops.name_scope(name, values=[scale]) as ns:
      super(WishartCholesky, self).__init__(
          df=df,
          scale_operator_pd=operator_pd_cholesky.OperatorPDCholesky(
              scale, verify_pd=validate_args),
          cholesky_input_output_matrices=cholesky_input_output_matrices,
          validate_args=validate_args,
          allow_nan_stats=allow_nan_stats,
          name=ns)
    self._parameters = parameters
    def _create_scale_operator(self, identity_multiplier, diag, tril,
                               perturb_diag, perturb_factor, event_ndims,
                               validate_args):
        """Construct `scale` from various components.

    Args:
      identity_multiplier: floating point rank 0 `Tensor` representing a scaling
        done to the identity matrix.
      diag: Floating-point `Tensor` representing the diagonal matrix.
        `scale_diag` has shape [N1, N2, ...  k], which represents a k x k
        diagonal matrix.
      tril: Floating-point `Tensor` representing the diagonal matrix.
        `scale_tril` has shape [N1, N2, ...  k], which represents a k x k lower
        triangular matrix.
      perturb_diag: Floating-point `Tensor` representing the diagonal matrix of
        the low rank update.
      perturb_factor: Floating-point `Tensor` representing factor matrix.
      event_ndims: Scalar `int32` `Tensor` indicating the number of dimensions
        associated with a particular draw from the distribution. Must be 0 or 1
      validate_args: Python `bool` indicating whether arguments should be
        checked for correctness.

    Returns:
      scale. In the case of scaling by a constant, scale is a
      floating point `Tensor`. Otherwise, scale is an `OperatorPD`.

    Raises:
      ValueError: if all of `tril`, `diag` and `identity_multiplier` are `None`.
    """
        identity_multiplier = _as_tensor(identity_multiplier,
                                         "identity_multiplier")
        diag = _as_tensor(diag, "diag")
        tril = _as_tensor(tril, "tril")
        perturb_diag = _as_tensor(perturb_diag, "perturb_diag")
        perturb_factor = _as_tensor(perturb_factor, "perturb_factor")

        identity_multiplier = self._maybe_validate_identity_multiplier(
            identity_multiplier, validate_args)

        if perturb_factor is not None:
            perturb_factor = self._process_matrix(perturb_factor,
                                                  min_rank=2,
                                                  event_ndims=event_ndims)

        if perturb_diag is not None:
            perturb_diag = self._process_matrix(perturb_diag,
                                                min_rank=1,
                                                event_ndims=event_ndims)

        # The following if-statments are ordered by increasingly stronger
        # assumptions in the base matrix, i.e., we process in the order:
        # TriL, Diag, Identity.

        if tril is not None:
            tril = self._preprocess_tril(identity_multiplier, diag, tril,
                                         event_ndims)
            if perturb_factor is None:
                return operator_pd_cholesky.OperatorPDCholesky(
                    tril, verify_pd=validate_args)
            return _TriLPlusVDVTLightweightOperatorPD(
                tril=tril,
                v=perturb_factor,
                diag=perturb_diag,
                validate_args=validate_args)

        if diag is not None:
            diag = self._preprocess_diag(identity_multiplier, diag,
                                         event_ndims)
            if perturb_factor is None:
                return operator_pd_diag.OperatorPDSqrtDiag(
                    diag, verify_pd=validate_args)
            return operator_pd_vdvt_update.OperatorPDSqrtVDVTUpdate(
                operator=operator_pd_diag.OperatorPDDiag(
                    diag, verify_pd=validate_args),
                v=perturb_factor,
                diag=perturb_diag,
                verify_pd=validate_args)

        if identity_multiplier is not None:
            if perturb_factor is None:
                return identity_multiplier
            # Infer the shape from the V and D.
            v_shape = array_ops.shape(perturb_factor)
            identity_shape = array_ops.concat([v_shape[:-1], [v_shape[-2]]], 0)
            scaled_identity = operator_pd_identity.OperatorPDIdentity(
                identity_shape,
                perturb_factor.dtype.base_dtype,
                scale=identity_multiplier,
                verify_pd=validate_args)
            return operator_pd_vdvt_update.OperatorPDSqrtVDVTUpdate(
                operator=scaled_identity,
                v=perturb_factor,
                diag=perturb_diag,
                verify_pd=validate_args)

        raise ValueError(
            "One of tril, diag and/or identity_multiplier must be "
            "specified.")