Exemple #1
0
 def test_versus_numpy_multidim_x(self):
   with self.test_session() as sess:
     x = constant_op.constant([[0., -1.], [0.5, -2.]])
     y = trig.arcsinh(x)
     grad = gradients_impl.gradients(y, x)[0]
     x_, y_, grad_ = sess.run([x, y, grad])
     self.assertAllClose(np.arcsinh(x_), y_)
     self._assert_all_finite(y_)
     self._assert_all_finite(grad_)
Exemple #2
0
 def test_versus_numpy_multidim_x(self):
     with self.test_session() as sess:
         x = constant_op.constant([[0., -1.], [0.5, -2.]])
         y = trig.arcsinh(x)
         grad = gradients_impl.gradients(y, x)[0]
         x_, y_, grad_ = sess.run([x, y, grad])
         self.assertAllClose(np.arcsinh(x_), y_)
         self._assert_all_finite(y_)
         self._assert_all_finite(grad_)
Exemple #3
0
 def test_versus_numpy_negative_values_64_bit(self):
     with self.test_session() as sess:
         x = constant_op.constant(-np.logspace(0, 200, num=1000))
         y = trig.arcsinh(x)
         grad = gradients_impl.gradients(y, x)[0]
         x_, y_, grad_ = sess.run([x, y, grad])
         self.assertAllClose(np.arcsinh(x_), y_, rtol=1e-5)
         self._assert_all_finite(y_)
         self._assert_all_finite(grad_)
Exemple #4
0
 def test_versus_numpy_at_zero(self):
   # Zero is especially difficult.
   with self.test_session() as sess:
     x = constant_op.constant(0.)
     y = trig.arcsinh(x)
     grad = gradients_impl.gradients(y, x)[0]
     x_, y_, grad_ = sess.run([x, y, grad])
     self.assertAllClose(np.arcsinh(x_), y_)
     self._assert_all_finite(y_)
     self._assert_all_finite(grad_)
Exemple #5
0
 def test_versus_numpy_at_zero(self):
     # Zero is especially difficult.
     with self.test_session() as sess:
         x = constant_op.constant(0.)
         y = trig.arcsinh(x)
         grad = gradients_impl.gradients(y, x)[0]
         x_, y_, grad_ = sess.run([x, y, grad])
         self.assertAllClose(np.arcsinh(x_), y_)
         self._assert_all_finite(y_)
         self._assert_all_finite(grad_)
Exemple #6
0
 def test_versus_numpy_negative_values_64_bit(self):
   with self.test_session() as sess:
     x = constant_op.constant(-np.logspace(0, 200, num=1000))
     y = trig.arcsinh(x)
     grad = gradients_impl.gradients(y, x)[0]
     x_, y_, grad_ = sess.run([x, y, grad])
     self.assertAllClose(
         np.arcsinh(x_),
         y_,
         rtol=1e-5)
     self._assert_all_finite(y_)
     self._assert_all_finite(grad_)
Exemple #7
0
 def test_versus_numpy_positive_values_32_bit(self):
   with self.test_session() as sess:
     # Larger than 38 is Inf in float32.
     x = constant_op.constant(np.logspace(0, 38, num=2000).astype(np.float32))
     y = trig.arcsinh(x)
     grad = gradients_impl.gradients(y, x)[0]
     x_, y_, grad_ = sess.run([x, y, grad])
     self.assertAllClose(
         np.arcsinh(x_),  # numpy does this in 64bit
         y_,
         rtol=1e-6)
     self._assert_all_finite(y_)
     self._assert_all_finite(grad_)
Exemple #8
0
 def test_versus_numpy_moderate_negative_values_32_bit(self):
   # The moderate negative values were the most difficult to get close to
   # numpy.
   with self.test_session() as sess:
     x = constant_op.constant(-np.logspace(0, 10, num=1000).astype(np.float32))
     y = trig.arcsinh(x)
     grad = gradients_impl.gradients(y, x)[0]
     x_, y_, grad_ = sess.run([x, y, grad])
     self.assertAllClose(
         np.arcsinh(x_),  # numpy does this in 64bit
         y_,
         rtol=1e-4)
     self._assert_all_finite(y_)
     self._assert_all_finite(grad_)
Exemple #9
0
 def test_versus_numpy_positive_values_32_bit(self):
     with self.test_session() as sess:
         # Larger than 38 is Inf in float32.
         x = constant_op.constant(
             np.logspace(0, 38, num=2000).astype(np.float32))
         y = trig.arcsinh(x)
         grad = gradients_impl.gradients(y, x)[0]
         x_, y_, grad_ = sess.run([x, y, grad])
         self.assertAllClose(
             np.arcsinh(x_),  # numpy does this in 64bit
             y_,
             rtol=1e-6)
         self._assert_all_finite(y_)
         self._assert_all_finite(grad_)
Exemple #10
0
 def test_versus_numpy_extreme_negative_values_32_bit(self):
   # For these extreme values arcsinh uses the approximation 1 / (2 * x), and
   # 1 / 10^38 = 0 in 32bit...so stop at 10^37.
   with self.test_session() as sess:
     x = constant_op.constant(
         -np.logspace(10, 37, num=1000).astype(np.float32))
     y = trig.arcsinh(x)
     grad = gradients_impl.gradients(y, x)[0]
     x_, y_, grad_ = sess.run([x, y, grad])
     self.assertAllClose(
         np.arcsinh(x_),  # numpy does this in 64bit
         y_,
         rtol=1e-6)
     self._assert_all_finite(y_)
     self._assert_all_finite(grad_)
Exemple #11
0
 def test_versus_numpy_moderate_negative_values_32_bit(self):
     # The moderate negative values were the most difficult to get close to
     # numpy.
     with self.test_session() as sess:
         x = constant_op.constant(
             -np.logspace(0, 10, num=1000).astype(np.float32))
         y = trig.arcsinh(x)
         grad = gradients_impl.gradients(y, x)[0]
         x_, y_, grad_ = sess.run([x, y, grad])
         self.assertAllClose(
             np.arcsinh(x_),  # numpy does this in 64bit
             y_,
             rtol=1e-4)
         self._assert_all_finite(y_)
         self._assert_all_finite(grad_)
Exemple #12
0
 def test_versus_numpy_extreme_negative_values_32_bit(self):
     # For these extreme values arcsinh uses the approximation 1 / (2 * x), and
     # 1 / 10^38 = 0 in 32bit...so stop at 10^37.
     with self.test_session() as sess:
         x = constant_op.constant(
             -np.logspace(10, 37, num=1000).astype(np.float32))
         y = trig.arcsinh(x)
         grad = gradients_impl.gradients(y, x)[0]
         x_, y_, grad_ = sess.run([x, y, grad])
         self.assertAllClose(
             np.arcsinh(x_),  # numpy does this in 64bit
             y_,
             rtol=1e-6)
         self._assert_all_finite(y_)
         self._assert_all_finite(grad_)
Exemple #13
0
 def test_versus_numpy_scalar_positive_x(self):
   x = 1.23
   with self.test_session():
     self.assertAllClose(np.arcsinh(x), trig.arcsinh(x).eval())
Exemple #14
0
 def test_versus_numpy_scalar_positive_x(self):
     x = 1.23
     with self.test_session():
         self.assertAllClose(np.arcsinh(x), trig.arcsinh(x).eval())