def inference(input_shape, N_CLASSES):
    '''build the model
    args:
        image: image batch, 4D tensor [batch_size, width, height, channels=3], dtype=tf.float32
    return:
        output tensor with the computed logits, float, [batch_size, n_classes]
    '''

    inputs = Input(shape=input_shape)

    K.set_learning_phase(
        False)  # all new operations will be in test mode from now on

    ## Conv layer 1
    x = dn_layer(inputs=inputs, name='layer1')
    x = MaxPooling2D((2, 2), strides=(2, 2), name='layer1_maxpool')(x)

    ## Conv layer 2
    x = dn_layer(inputs=x, num_filters=32, name='layer2')
    x = MaxPooling2D((2, 2), strides=(2, 2), name='layer2_maxpool')(x)

    ## Conv layer 3
    x = dn_layer(inputs=x, num_filters=64, name='layer3')
    x = MaxPooling2D((2, 2), strides=(2, 2), name='layer3_maxpool')(x)

    x = GlobalAveragePooling2D(name='GlobalAveragePooling2D')(x)

    #x = Flatten(name='flatten')(x)
    x = Dense(N_CLASSES, activation='softmax', name='predictions')(x)

    model = Model(inputs=inputs, outputs=x)
    return model
Exemple #2
0
def Squeeze_excitation_layer(input_x):
    ratio = 4
    out_dim = int(np.shape(input_x)[-1])
    squeeze = GlobalAveragePooling2D()(input_x)
    excitation = Dense(units=int(out_dim / ratio))(squeeze)
    excitation = Activation('relu')(excitation)
    excitation = Dense(units=out_dim)(excitation)
    excitation = Activation('sigmoid')(excitation)
    excitation = layers.Reshape([-1, 1, out_dim])(excitation)
    scale = layers.multiply([input_x, excitation])

    return scale
    def build(self,alpha, img_input, temp_softmax):

        shape = (1, 1, int(1024 * alpha))
	"""
	This looks dangerous. Not sure how the model would get affected with the laarning_phase variable set to True.
	"""
        
        K.set_learning_phase(True)

	with tf.name_scope('teacher') as scope:

	    self.conv1 = Conv2D(
                        int(32*alpha),
                        (3,3),
                        padding='same',
                        use_bias=False,
                        strides=(1,1),
                        name='teacher_conv1', trainable=self.trainable)(img_input)
            self.conv2 = BatchNormalization(axis=-1, name='teacher_conv1_bn', trainable=self.trainable)(self.conv1)
            self.conv3 = Activation(self.relu6, name='teacher_conv1_relu', trainable=self.trainable)(self.conv2)

	    self.conv4 = self._depthwise_conv_block(self.conv3, 64, alpha, depth_multiplier, block_id = 15)
	    self.conv5 = self._depthwise_conv_block(self.conv4, 128, alpha, depth_multiplier,strides=(2, 2), block_id =16)
	    self.conv6 =self. _depthwise_conv_block(self.conv5, 128, alpha, depth_multiplier,block_id =17)
	    self.conv7 = self._depthwise_conv_block(self.conv6, 256, alpha, depth_multiplier, strides=(2,2),block_id =18)
	    self.conv8 = self._depthwise_conv_block(self.conv7, 256, alpha, depth_multiplier, block_id =19)
	    self.conv9 = self._depthwise_conv_block(self.conv8, 512, alpha, depth_multiplier, strides = (2,2), block_id =20)
	    self.conv10 = self._depthwise_conv_block(self.conv9, 512, alpha, depth_multiplier, block_id =21)
	    self.conv11 = self._depthwise_conv_block(self.conv10, 512, alpha, depth_multiplier, block_id =22)
	    self.conv12 = self._depthwise_conv_block(self.conv11, 512, alpha, depth_multiplier, block_id =23)
	    self.conv13 = self._depthwise_conv_block(self.conv12, 512, alpha, depth_multiplier, block_id =24)
	    self.conv14 = self._depthwise_conv_block(self.conv13, 512, alpha, depth_multiplier, block_id =25)
	    self.conv15 = self._depthwise_conv_block(self.conv14, 1024, alpha, depth_multiplier,strides=(2,2), block_id =26)
	    self.conv16 = self._depthwise_conv_block(self.conv15, 1024, alpha, depth_multiplier, block_id =27)

            self.conv17 = GlobalAveragePooling2D()(self.conv16)
            self.conv18 = Reshape(shape, name='teacher_reshape_1', trainable=self.trainable)(self.conv17)
	
            self.conv19 = Dropout(0.5, name='teacher_dropout', trainable=self.trainable)(self.conv18)
            self.conv20 = Conv2D(self.num_classes, (1, 1), padding='same', name='teacher_conv_preds', trainable=self.trainable)(self.conv18)
            self.conv21 = Activation('softmax', name='teacher_act_softmax', trainable=self.trainable)(tf.divide(self.conv20, temp_softmax))
            self.conv22 = Reshape((self.num_classes,), name='teacher_reshape_2', trainable=self.trainable)(self.conv21)

        return self
def VGG16(include_top=True,
          weights='imagenet',
          input_tensor=None,
          input_shape=None,
          pooling=None,
          classes=1000):
    """Instantiates the VGG16 architecture.

  Optionally loads weights pre-trained
  on ImageNet. Note that when using TensorFlow,
  for best performance you should set
  `image_data_format="channels_last"` in your Keras config
  at ~/.keras/keras.json.

  The model and the weights are compatible with both
  TensorFlow and Theano. The data format
  convention used by the model is the one
  specified in your Keras config file.

  Arguments:
      include_top: whether to include the 3 fully-connected
          layers at the top of the network.
      weights: one of `None` (random initialization)
          or "imagenet" (pre-training on ImageNet).
      input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
          to use as image input for the model.
      input_shape: optional shape tuple, only to be specified
          if `include_top` is False (otherwise the input shape
          has to be `(224, 224, 3)` (with `channels_last` data format)
          or `(3, 224, 224)` (with `channels_first` data format).
          It should have exactly 3 inputs channels,
          and width and height should be no smaller than 48.
          E.g. `(200, 200, 3)` would be one valid value.
      pooling: Optional pooling mode for feature extraction
          when `include_top` is `False`.
          - `None` means that the output of the model will be
              the 4D tensor output of the
              last convolutional layer.
          - `avg` means that global average pooling
              will be applied to the output of the
              last convolutional layer, and thus
              the output of the model will be a 2D tensor.
          - `max` means that global max pooling will
              be applied.
      classes: optional number of classes to classify images
          into, only to be specified if `include_top` is True, and
          if no `weights` argument is specified.

  Returns:
      A Keras model instance.

  Raises:
      ValueError: in case of invalid argument for `weights`,
          or invalid input shape.
  """
    if weights not in {'imagenet', None}:
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization) or `imagenet` '
                         '(pre-training on ImageNet).')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError('If using `weights` as imagenet with `include_top`'
                         ' as true, `classes` should be 1000')
    # Determine proper input shape
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=224,
                                      min_size=48,
                                      data_format=K.image_data_format(),
                                      include_top=include_top)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        img_input = Input(tensor=input_tensor, shape=input_shape)

    # Block 1
    x = Conv2D(64, (3, 3),
               activation='relu',
               padding='same',
               name='block1_conv1')(img_input)
    x = Conv2D(64, (3, 3),
               activation='relu',
               padding='same',
               name='block1_conv2')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)

    # Block 2
    x = Conv2D(128, (3, 3),
               activation='relu',
               padding='same',
               name='block2_conv1')(x)
    x = Conv2D(128, (3, 3),
               activation='relu',
               padding='same',
               name='block2_conv2')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)

    # Block 3
    x = Conv2D(256, (3, 3),
               activation='relu',
               padding='same',
               name='block3_conv1')(x)
    x = Conv2D(256, (3, 3),
               activation='relu',
               padding='same',
               name='block3_conv2')(x)
    x = Conv2D(256, (3, 3),
               activation='relu',
               padding='same',
               name='block3_conv3')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)

    # Block 4
    x = Conv2D(512, (3, 3),
               activation='relu',
               padding='same',
               name='block4_conv1')(x)
    x = Conv2D(512, (3, 3),
               activation='relu',
               padding='same',
               name='block4_conv2')(x)
    x = Conv2D(512, (3, 3),
               activation='relu',
               padding='same',
               name='block4_conv3')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)

    # Block 5
    x = Conv2D(512, (3, 3),
               activation='relu',
               padding='same',
               name='block5_conv1')(x)
    x = Conv2D(512, (3, 3),
               activation='relu',
               padding='same',
               name='block5_conv2')(x)
    x = Conv2D(512, (3, 3),
               activation='relu',
               padding='same',
               name='block5_conv3')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)

    if include_top:
        # Classification block
        x = Flatten(name='flatten')(x)
        x = Dense(4096, activation='relu', name='fc1')(x)
        x = Dense(4096, activation='relu', name='fc2')(x)
        x = Dense(classes, activation='softmax', name='predictions')(x)
    else:
        if pooling == 'avg':
            x = GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = Model(inputs, x, name='vgg16')

    # load weights
    if weights == 'imagenet':
        if include_top:
            weights_path = get_file(
                'vgg16_weights_tf_dim_ordering_tf_kernels.h5',
                WEIGHTS_PATH,
                cache_subdir='models')
        else:
            weights_path = get_file(
                'vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5',
                WEIGHTS_PATH_NO_TOP,
                cache_subdir='models')
        model.load_weights(weights_path)
        if K.backend() == 'theano':
            layer_utils.convert_all_kernels_in_model(model)

        if K.image_data_format() == 'channels_first':
            if include_top:
                maxpool = model.get_layer(name='block5_pool')
                shape = maxpool.output_shape[1:]
                dense = model.get_layer(name='fc1')
                layer_utils.convert_dense_weights_data_format(
                    dense, shape, 'channels_first')

            if K.backend() == 'tensorflow':
                warnings.warn('You are using the TensorFlow backend, yet you '
                              'are using the Theano '
                              'image data format convention '
                              '(`image_data_format="channels_first"`). '
                              'For best performance, set '
                              '`image_data_format="channels_last"` in '
                              'your Keras config '
                              'at ~/.keras/keras.json.')
    return model
Exemple #5
0
def Xception(include_top=True,
             weights='imagenet',
             input_tensor=None,
             input_shape=None,
             pooling=None,
             classes=1000):
    """Instantiates the Xception architecture.

  Optionally loads weights pre-trained
  on ImageNet. This model is available for TensorFlow only,
  and can only be used with inputs following the TensorFlow
  data format `(width, height, channels)`.
  You should set `image_data_format="channels_last"` in your Keras config
  located at ~/.keras/keras.json.

  Note that the default input image size for this model is 299x299.

  Arguments:
      include_top: whether to include the fully-connected
          layer at the top of the network.
      weights: one of `None` (random initialization)
          or "imagenet" (pre-training on ImageNet).
      input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
          to use as image input for the model.
      input_shape: optional shape tuple, only to be specified
          if `include_top` is False (otherwise the input shape
          has to be `(299, 299, 3)`.
          It should have exactly 3 input channels,
          and width and height should be no smaller than 71.
          E.g. `(150, 150, 3)` would be one valid value.
      pooling: Optional pooling mode for feature extraction
          when `include_top` is `False`.
          - `None` means that the output of the model will be
              the 4D tensor output of the
              last convolutional layer.
          - `avg` means that global average pooling
              will be applied to the output of the
              last convolutional layer, and thus
              the output of the model will be a 2D tensor.
          - `max` means that global max pooling will
              be applied.
      classes: optional number of classes to classify images
          into, only to be specified if `include_top` is True, and
          if no `weights` argument is specified.

  Returns:
      A Keras model instance.

  Raises:
      ValueError: in case of invalid argument for `weights`,
          or invalid input shape.
      RuntimeError: If attempting to run this model with a
          backend that does not support separable convolutions.
  """
    if weights not in {'imagenet', None}:
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization) or `imagenet` '
                         '(pre-training on ImageNet).')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError('If using `weights` as imagenet with `include_top`'
                         ' as true, `classes` should be 1000')

    if K.backend() != 'tensorflow':
        raise RuntimeError('The Xception model is only available with '
                           'the TensorFlow backend.')
    if K.image_data_format() != 'channels_last':
        logging.warning(
            'The Xception model is only available for the '
            'input data format "channels_last" '
            '(width, height, channels). '
            'However your settings specify the default '
            'data format "channels_first" (channels, width, height). '
            'You should set `image_data_format="channels_last"` in your Keras '
            'config located at ~/.keras/keras.json. '
            'The model being returned right now will expect inputs '
            'to follow the "channels_last" data format.')
        K.set_image_data_format('channels_last')
        old_data_format = 'channels_first'
    else:
        old_data_format = None

    # Determine proper input shape
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=299,
                                      min_size=71,
                                      data_format=K.image_data_format(),
                                      require_flatten=False,
                                      weights=weights)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        img_input = Input(tensor=input_tensor, shape=input_shape)

    x = Conv2D(32, (3, 3), strides=(2, 2), use_bias=False,
               name='block1_conv1')(img_input)
    x = BatchNormalization(name='block1_conv1_bn')(x)
    x = Activation('relu', name='block1_conv1_act')(x)
    x = Conv2D(64, (3, 3), use_bias=False, name='block1_conv2')(x)
    x = BatchNormalization(name='block1_conv2_bn')(x)
    x = Activation('relu', name='block1_conv2_act')(x)

    residual = Conv2D(128, (1, 1),
                      strides=(2, 2),
                      padding='same',
                      use_bias=False)(x)
    residual = BatchNormalization()(residual)

    x = SeparableConv2D(128, (3, 3),
                        padding='same',
                        use_bias=False,
                        name='block2_sepconv1')(x)
    x = BatchNormalization(name='block2_sepconv1_bn')(x)
    x = Activation('relu', name='block2_sepconv2_act')(x)
    x = SeparableConv2D(128, (3, 3),
                        padding='same',
                        use_bias=False,
                        name='block2_sepconv2')(x)
    x = BatchNormalization(name='block2_sepconv2_bn')(x)

    x = MaxPooling2D((3, 3),
                     strides=(2, 2),
                     padding='same',
                     name='block2_pool')(x)
    x = layers.add([x, residual])

    residual = Conv2D(256, (1, 1),
                      strides=(2, 2),
                      padding='same',
                      use_bias=False)(x)
    residual = BatchNormalization()(residual)

    x = Activation('relu', name='block3_sepconv1_act')(x)
    x = SeparableConv2D(256, (3, 3),
                        padding='same',
                        use_bias=False,
                        name='block3_sepconv1')(x)
    x = BatchNormalization(name='block3_sepconv1_bn')(x)
    x = Activation('relu', name='block3_sepconv2_act')(x)
    x = SeparableConv2D(256, (3, 3),
                        padding='same',
                        use_bias=False,
                        name='block3_sepconv2')(x)
    x = BatchNormalization(name='block3_sepconv2_bn')(x)

    x = MaxPooling2D((3, 3),
                     strides=(2, 2),
                     padding='same',
                     name='block3_pool')(x)
    x = layers.add([x, residual])

    residual = Conv2D(728, (1, 1),
                      strides=(2, 2),
                      padding='same',
                      use_bias=False)(x)
    residual = BatchNormalization()(residual)

    x = Activation('relu', name='block4_sepconv1_act')(x)
    x = SeparableConv2D(728, (3, 3),
                        padding='same',
                        use_bias=False,
                        name='block4_sepconv1')(x)
    x = BatchNormalization(name='block4_sepconv1_bn')(x)
    x = Activation('relu', name='block4_sepconv2_act')(x)
    x = SeparableConv2D(728, (3, 3),
                        padding='same',
                        use_bias=False,
                        name='block4_sepconv2')(x)
    x = BatchNormalization(name='block4_sepconv2_bn')(x)

    x = MaxPooling2D((3, 3),
                     strides=(2, 2),
                     padding='same',
                     name='block4_pool')(x)
    x = layers.add([x, residual])

    for i in range(8):
        residual = x
        prefix = 'block' + str(i + 5)

        x = Activation('relu', name=prefix + '_sepconv1_act')(x)
        x = SeparableConv2D(728, (3, 3),
                            padding='same',
                            use_bias=False,
                            name=prefix + '_sepconv1')(x)
        x = BatchNormalization(name=prefix + '_sepconv1_bn')(x)
        x = Activation('relu', name=prefix + '_sepconv2_act')(x)
        x = SeparableConv2D(728, (3, 3),
                            padding='same',
                            use_bias=False,
                            name=prefix + '_sepconv2')(x)
        x = BatchNormalization(name=prefix + '_sepconv2_bn')(x)
        x = Activation('relu', name=prefix + '_sepconv3_act')(x)
        x = SeparableConv2D(728, (3, 3),
                            padding='same',
                            use_bias=False,
                            name=prefix + '_sepconv3')(x)
        x = BatchNormalization(name=prefix + '_sepconv3_bn')(x)

        x = layers.add([x, residual])

    residual = Conv2D(1024, (1, 1),
                      strides=(2, 2),
                      padding='same',
                      use_bias=False)(x)
    residual = BatchNormalization()(residual)

    x = Activation('relu', name='block13_sepconv1_act')(x)
    x = SeparableConv2D(728, (3, 3),
                        padding='same',
                        use_bias=False,
                        name='block13_sepconv1')(x)
    x = BatchNormalization(name='block13_sepconv1_bn')(x)
    x = Activation('relu', name='block13_sepconv2_act')(x)
    x = SeparableConv2D(1024, (3, 3),
                        padding='same',
                        use_bias=False,
                        name='block13_sepconv2')(x)
    x = BatchNormalization(name='block13_sepconv2_bn')(x)

    x = MaxPooling2D((3, 3),
                     strides=(2, 2),
                     padding='same',
                     name='block13_pool')(x)
    x = layers.add([x, residual])

    x = SeparableConv2D(1536, (3, 3),
                        padding='same',
                        use_bias=False,
                        name='block14_sepconv1')(x)
    x = BatchNormalization(name='block14_sepconv1_bn')(x)
    x = Activation('relu', name='block14_sepconv1_act')(x)

    x = SeparableConv2D(2048, (3, 3),
                        padding='same',
                        use_bias=False,
                        name='block14_sepconv2')(x)
    x = BatchNormalization(name='block14_sepconv2_bn')(x)
    x = Activation('relu', name='block14_sepconv2_act')(x)

    if include_top:
        x = GlobalAveragePooling2D(name='avg_pool')(x)
        x = Dense(classes, activation='softmax', name='predictions')(x)
    else:
        if pooling == 'avg':
            x = GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = Model(inputs, x, name='xception')

    # load weights
    if weights == 'imagenet':
        if include_top:
            weights_path = get_file(
                'xception_weights_tf_dim_ordering_tf_kernels.h5',
                TF_WEIGHTS_PATH,
                cache_subdir='models')
        else:
            weights_path = get_file(
                'xception_weights_tf_dim_ordering_tf_kernels_notop.h5',
                TF_WEIGHTS_PATH_NO_TOP,
                cache_subdir='models')
        model.load_weights(weights_path)

    if old_data_format:
        K.set_image_data_format(old_data_format)
    return model
Exemple #6
0
def InceptionV3(include_top=True,
                weights='imagenet',
                input_tensor=None,
                input_shape=None,
                pooling=None,
                classes=1000):
  """Instantiates the Inception v3 architecture.

  Optionally loads weights pre-trained
  on ImageNet. Note that when using TensorFlow,
  for best performance you should set
  `image_data_format="channels_last"` in your Keras config
  at ~/.keras/keras.json.
  The model and the weights are compatible with both
  TensorFlow and Theano. The data format
  convention used by the model is the one
  specified in your Keras config file.
  Note that the default input image size for this model is 299x299.

  Arguments:
      include_top: whether to include the fully-connected
          layer at the top of the network.
      weights: one of `None` (random initialization)
          or "imagenet" (pre-training on ImageNet).
      input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
          to use as image input for the model.
      input_shape: optional shape tuple, only to be specified
          if `include_top` is False (otherwise the input shape
          has to be `(299, 299, 3)` (with `channels_last` data format)
          or `(3, 299, 299)` (with `channels_first` data format).
          It should have exactly 3 input channels,
          and width and height should be no smaller than 139.
          E.g. `(150, 150, 3)` would be one valid value.
      pooling: Optional pooling mode for feature extraction
          when `include_top` is `False`.
          - `None` means that the output of the model will be
              the 4D tensor output of the
              last convolutional layer.
          - `avg` means that global average pooling
              will be applied to the output of the
              last convolutional layer, and thus
              the output of the model will be a 2D tensor.
          - `max` means that global max pooling will
              be applied.
      classes: optional number of classes to classify images
          into, only to be specified if `include_top` is True, and
          if no `weights` argument is specified.

  Returns:
      A Keras model instance.

  Raises:
      ValueError: in case of invalid argument for `weights`,
          or invalid input shape.
  """
  if weights not in {'imagenet', None}:
    raise ValueError('The `weights` argument should be either '
                     '`None` (random initialization) or `imagenet` '
                     '(pre-training on ImageNet).')

  if weights == 'imagenet' and include_top and classes != 1000:
    raise ValueError('If using `weights` as imagenet with `include_top`'
                     ' as true, `classes` should be 1000')

  # Determine proper input shape
  input_shape = _obtain_input_shape(
      input_shape,
      default_size=299,
      min_size=139,
      data_format=K.image_data_format(),
      require_flatten=False,
      weights=weights)

  if input_tensor is None:
    img_input = Input(shape=input_shape)
  else:
    img_input = Input(tensor=input_tensor, shape=input_shape)

  if K.image_data_format() == 'channels_first':
    channel_axis = 1
  else:
    channel_axis = 3

  x = conv2d_bn(img_input, 32, 3, 3, strides=(2, 2), padding='valid')
  x = conv2d_bn(x, 32, 3, 3, padding='valid')
  x = conv2d_bn(x, 64, 3, 3)
  x = MaxPooling2D((3, 3), strides=(2, 2))(x)

  x = conv2d_bn(x, 80, 1, 1, padding='valid')
  x = conv2d_bn(x, 192, 3, 3, padding='valid')
  x = MaxPooling2D((3, 3), strides=(2, 2))(x)

  # mixed 0, 1, 2: 35 x 35 x 256
  branch1x1 = conv2d_bn(x, 64, 1, 1)

  branch5x5 = conv2d_bn(x, 48, 1, 1)
  branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)

  branch3x3dbl = conv2d_bn(x, 64, 1, 1)
  branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
  branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)

  branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
  branch_pool = conv2d_bn(branch_pool, 32, 1, 1)
  x = layers.concatenate(
      [branch1x1, branch5x5, branch3x3dbl, branch_pool],
      axis=channel_axis,
      name='mixed0')

  # mixed 1: 35 x 35 x 256
  branch1x1 = conv2d_bn(x, 64, 1, 1)

  branch5x5 = conv2d_bn(x, 48, 1, 1)
  branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)

  branch3x3dbl = conv2d_bn(x, 64, 1, 1)
  branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
  branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)

  branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
  branch_pool = conv2d_bn(branch_pool, 64, 1, 1)
  x = layers.concatenate(
      [branch1x1, branch5x5, branch3x3dbl, branch_pool],
      axis=channel_axis,
      name='mixed1')

  # mixed 2: 35 x 35 x 256
  branch1x1 = conv2d_bn(x, 64, 1, 1)

  branch5x5 = conv2d_bn(x, 48, 1, 1)
  branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)

  branch3x3dbl = conv2d_bn(x, 64, 1, 1)
  branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
  branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)

  branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
  branch_pool = conv2d_bn(branch_pool, 64, 1, 1)
  x = layers.concatenate(
      [branch1x1, branch5x5, branch3x3dbl, branch_pool],
      axis=channel_axis,
      name='mixed2')

  # mixed 3: 17 x 17 x 768
  branch3x3 = conv2d_bn(x, 384, 3, 3, strides=(2, 2), padding='valid')

  branch3x3dbl = conv2d_bn(x, 64, 1, 1)
  branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
  branch3x3dbl = conv2d_bn(
      branch3x3dbl, 96, 3, 3, strides=(2, 2), padding='valid')

  branch_pool = MaxPooling2D((3, 3), strides=(2, 2))(x)
  x = layers.concatenate(
      [branch3x3, branch3x3dbl, branch_pool], axis=channel_axis, name='mixed3')

  # mixed 4: 17 x 17 x 768
  branch1x1 = conv2d_bn(x, 192, 1, 1)

  branch7x7 = conv2d_bn(x, 128, 1, 1)
  branch7x7 = conv2d_bn(branch7x7, 128, 1, 7)
  branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)

  branch7x7dbl = conv2d_bn(x, 128, 1, 1)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 7, 1)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 1, 7)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 7, 1)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)

  branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
  branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
  x = layers.concatenate(
      [branch1x1, branch7x7, branch7x7dbl, branch_pool],
      axis=channel_axis,
      name='mixed4')

  # mixed 5, 6: 17 x 17 x 768
  for i in range(2):
    branch1x1 = conv2d_bn(x, 192, 1, 1)

    branch7x7 = conv2d_bn(x, 160, 1, 1)
    branch7x7 = conv2d_bn(branch7x7, 160, 1, 7)
    branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)

    branch7x7dbl = conv2d_bn(x, 160, 1, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 1, 7)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
    x = layers.concatenate(
        [branch1x1, branch7x7, branch7x7dbl, branch_pool],
        axis=channel_axis,
        name='mixed' + str(5 + i))

  # mixed 7: 17 x 17 x 768
  branch1x1 = conv2d_bn(x, 192, 1, 1)

  branch7x7 = conv2d_bn(x, 192, 1, 1)
  branch7x7 = conv2d_bn(branch7x7, 192, 1, 7)
  branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)

  branch7x7dbl = conv2d_bn(x, 192, 1, 1)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 7, 1)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 7, 1)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)

  branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
  branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
  x = layers.concatenate(
      [branch1x1, branch7x7, branch7x7dbl, branch_pool],
      axis=channel_axis,
      name='mixed7')

  # mixed 8: 8 x 8 x 1280
  branch3x3 = conv2d_bn(x, 192, 1, 1)
  branch3x3 = conv2d_bn(branch3x3, 320, 3, 3, strides=(2, 2), padding='valid')

  branch7x7x3 = conv2d_bn(x, 192, 1, 1)
  branch7x7x3 = conv2d_bn(branch7x7x3, 192, 1, 7)
  branch7x7x3 = conv2d_bn(branch7x7x3, 192, 7, 1)
  branch7x7x3 = conv2d_bn(
      branch7x7x3, 192, 3, 3, strides=(2, 2), padding='valid')

  branch_pool = MaxPooling2D((3, 3), strides=(2, 2))(x)
  x = layers.concatenate(
      [branch3x3, branch7x7x3, branch_pool], axis=channel_axis, name='mixed8')

  # mixed 9: 8 x 8 x 2048
  for i in range(2):
    branch1x1 = conv2d_bn(x, 320, 1, 1)

    branch3x3 = conv2d_bn(x, 384, 1, 1)
    branch3x3_1 = conv2d_bn(branch3x3, 384, 1, 3)
    branch3x3_2 = conv2d_bn(branch3x3, 384, 3, 1)
    branch3x3 = layers.concatenate(
        [branch3x3_1, branch3x3_2], axis=channel_axis, name='mixed9_' + str(i))

    branch3x3dbl = conv2d_bn(x, 448, 1, 1)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 384, 3, 3)
    branch3x3dbl_1 = conv2d_bn(branch3x3dbl, 384, 1, 3)
    branch3x3dbl_2 = conv2d_bn(branch3x3dbl, 384, 3, 1)
    branch3x3dbl = layers.concatenate(
        [branch3x3dbl_1, branch3x3dbl_2], axis=channel_axis)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
    x = layers.concatenate(
        [branch1x1, branch3x3, branch3x3dbl, branch_pool],
        axis=channel_axis,
        name='mixed' + str(9 + i))
  if include_top:
    # Classification block
    x = GlobalAveragePooling2D(name='avg_pool')(x)
    x = Dense(classes, activation='softmax', name='predictions')(x)
  else:
    if pooling == 'avg':
      x = GlobalAveragePooling2D()(x)
    elif pooling == 'max':
      x = GlobalMaxPooling2D()(x)

  # Ensure that the model takes into account
  # any potential predecessors of `input_tensor`.
  if input_tensor is not None:
    inputs = get_source_inputs(input_tensor)
  else:
    inputs = img_input
  # Create model.
  model = Model(inputs, x, name='inception_v3')

  # load weights
  if weights == 'imagenet':
    if include_top:
      weights_path = get_file(
          'inception_v3_weights_tf_dim_ordering_tf_kernels.h5',
          WEIGHTS_PATH,
          cache_subdir='models',
          md5_hash='9a0d58056eeedaa3f26cb7ebd46da564')
    else:
      weights_path = get_file(
          'inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5',
          WEIGHTS_PATH_NO_TOP,
          cache_subdir='models',
          md5_hash='bcbd6486424b2319ff4ef7d526e38f63')
    model.load_weights(weights_path)
  return model
Exemple #7
0
def ResNet50(include_top=True,
             weights='imagenet',
             input_tensor=None,
             input_shape=None,
             pooling=None,
             classes=1000):
  """Instantiates the ResNet50 architecture.

  Optionally loads weights pre-trained
  on ImageNet. Note that when using TensorFlow,
  for best performance you should set
  `image_data_format="channels_last"` in your Keras config
  at ~/.keras/keras.json.

  The model and the weights are compatible with both
  TensorFlow and Theano. The data format
  convention used by the model is the one
  specified in your Keras config file.

  Arguments:
      include_top: whether to include the 3 fully-connected
          layers at the top of the network.
      weights: one of `None` (random initialization)
          or "imagenet" (pre-training on ImageNet).
      input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
          to use as image input for the model.
      input_shape: optional shape tuple, only to be specified
          if `include_top` is False (otherwise the input shape
          has to be `(224, 224, 3)` (with `channels_last` data format)
          or `(3, 224, 244)` (with `channels_first` data format).
          It should have exactly 3 inputs channels,
          and width and height should be no smaller than 197.
          E.g. `(200, 200, 3)` would be one valid value.
      pooling: Optional pooling mode for feature extraction
          when `include_top` is `False`.
          - `None` means that the output of the model will be
              the 4D tensor output of the
              last convolutional layer.
          - `avg` means that global average pooling
              will be applied to the output of the
              last convolutional layer, and thus
              the output of the model will be a 2D tensor.
          - `max` means that global max pooling will
              be applied.
      classes: optional number of classes to classify images
          into, only to be specified if `include_top` is True, and
          if no `weights` argument is specified.

  Returns:
      A Keras model instance.

  Raises:
      ValueError: in case of invalid argument for `weights`,
          or invalid input shape.
  """
  if weights not in {'imagenet', None}:
    raise ValueError('The `weights` argument should be either '
                     '`None` (random initialization) or `imagenet` '
                     '(pre-training on ImageNet).')

  if weights == 'imagenet' and include_top and classes != 1000:
    raise ValueError('If using `weights` as imagenet with `include_top`'
                     ' as true, `classes` should be 1000')

  # Determine proper input shape
  input_shape = _obtain_input_shape(
      input_shape,
      default_size=224,
      min_size=197,
      data_format=K.image_data_format(),
      include_top=include_top)

  if input_tensor is None:
    img_input = Input(shape=input_shape)
  else:
    img_input = Input(tensor=input_tensor, shape=input_shape)

  if K.image_data_format() == 'channels_last':
    bn_axis = 3
  else:
    bn_axis = 1

  x = ZeroPadding2D((3, 3))(img_input)
  x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1')(x)
  x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
  x = Activation('relu')(x)
  x = MaxPooling2D((3, 3), strides=(2, 2))(x)

  x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
  x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
  x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')

  x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
  x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
  x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
  x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')

  x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
  x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
  x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
  x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
  x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
  x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')

  x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
  x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
  x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')

  x = AveragePooling2D((7, 7), name='avg_pool')(x)

  if include_top:
    x = Flatten()(x)
    x = Dense(classes, activation='softmax', name='fc1000')(x)
  else:
    if pooling == 'avg':
      x = GlobalAveragePooling2D()(x)
    elif pooling == 'max':
      x = GlobalMaxPooling2D()(x)

  # Ensure that the model takes into account
  # any potential predecessors of `input_tensor`.
  if input_tensor is not None:
    inputs = get_source_inputs(input_tensor)
  else:
    inputs = img_input
  # Create model.
  model = Model(inputs, x, name='resnet50')

  # load weights
  if weights == 'imagenet':
    if include_top:
      weights_path = get_file(
          'resnet50_weights_tf_dim_ordering_tf_kernels.h5',
          WEIGHTS_PATH,
          cache_subdir='models',
          md5_hash='a7b3fe01876f51b976af0dea6bc144eb')
    else:
      weights_path = get_file(
          'resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5',
          WEIGHTS_PATH_NO_TOP,
          cache_subdir='models',
          md5_hash='a268eb855778b3df3c7506639542a6af')
    model.load_weights(weights_path)
    if K.backend() == 'theano':
      layer_utils.convert_all_kernels_in_model(model)

    if K.image_data_format() == 'channels_first':
      if include_top:
        maxpool = model.get_layer(name='avg_pool')
        shape = maxpool.output_shape[1:]
        dense = model.get_layer(name='fc1000')
        layer_utils.convert_dense_weights_data_format(dense, shape,
                                                      'channels_first')

      if K.backend() == 'tensorflow':
        warnings.warn('You are using the TensorFlow backend, yet you '
                      'are using the Theano '
                      'image data format convention '
                      '(`image_data_format="channels_first"`). '
                      'For best performance, set '
                      '`image_data_format="channels_last"` in '
                      'your Keras config '
                      'at ~/.keras/keras.json.')
  return model
Exemple #8
0
def MobileNet(
        input_shape=None,  # pylint: disable=invalid-name
        alpha=1.0,
        depth_multiplier=1,
        dropout=1e-3,
        include_top=True,
        weights='imagenet',
        input_tensor=None,
        pooling=None,
        classes=1000):
    """Instantiates the MobileNet architecture.

  Note that only TensorFlow is supported for now,
  therefore it only works with the data format
  `image_data_format='channels_last'` in your Keras config
  at `~/.keras/keras.json`.

  To load a MobileNet model via `load_model`, import the custom
  objects `relu6` and `DepthwiseConv2D` and pass them to the
  `custom_objects` parameter.
  E.g.
  model = load_model('mobilenet.h5', custom_objects={
                     'relu6': mobilenet.relu6,
                     'DepthwiseConv2D': mobilenet.DepthwiseConv2D})

  Arguments:
      input_shape: optional shape tuple, only to be specified
          if `include_top` is False (otherwise the input shape
          has to be `(224, 224, 3)` (with `channels_last` data format)
          or (3, 224, 224) (with `channels_first` data format).
          It should have exactly 3 input channels,
          and width and height should be no smaller than 32.
          E.g. `(200, 200, 3)` would be one valid value.
      alpha: controls the width of the network.
          - If `alpha` < 1.0, proportionally decreases the number
              of filters in each layer.
          - If `alpha` > 1.0, proportionally increases the number
              of filters in each layer.
          - If `alpha` = 1, default number of filters from the paper
               are used at each layer.
      depth_multiplier: depth multiplier for depthwise convolution
          (also called the resolution multiplier)
      dropout: dropout rate
      include_top: whether to include the fully-connected
          layer at the top of the network.
      weights: `None` (random initialization) or
          `imagenet` (ImageNet weights)
      input_tensor: optional Keras tensor (i.e. output of
          `layers.Input()`)
          to use as image input for the model.
      pooling: Optional pooling mode for feature extraction
          when `include_top` is `False`.
          - `None` means that the output of the model
              will be the 4D tensor output of the
              last convolutional layer.
          - `avg` means that global average pooling
              will be applied to the output of the
              last convolutional layer, and thus
              the output of the model will be a
              2D tensor.
          - `max` means that global max pooling will
              be applied.
      classes: optional number of classes to classify images
          into, only to be specified if `include_top` is True, and
          if no `weights` argument is specified.

  Returns:
      A Keras model instance.

  Raises:
      ValueError: in case of invalid argument for `weights`,
          or invalid input shape.
      RuntimeError: If attempting to run this model with a
          backend that does not support separable convolutions.
  """

    if K.backend() != 'tensorflow':
        raise RuntimeError('Only TensorFlow backend is currently supported, '
                           'as other backends do not support '
                           'depthwise convolution.')

    if weights not in {'imagenet', None}:
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization) or `imagenet` '
                         '(pre-training on ImageNet).')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError('If using `weights` as ImageNet with `include_top` '
                         'as true, `classes` should be 1000')

    # Determine proper input shape.
    if input_shape is None:
        default_size = 224
    else:
        if K.image_data_format() == 'channels_first':
            rows = input_shape[1]
            cols = input_shape[2]
        else:
            rows = input_shape[0]
            cols = input_shape[1]
        if rows == cols and rows in [128, 160, 192, 224]:
            default_size = rows
        else:
            default_size = 224
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=default_size,
                                      min_size=32,
                                      data_format=K.image_data_format(),
                                      require_flatten=include_top,
                                      weights=weights)
    if K.image_data_format() == 'channels_last':
        row_axis, col_axis = (0, 1)
    else:
        row_axis, col_axis = (1, 2)
    rows = input_shape[row_axis]
    cols = input_shape[col_axis]

    if weights == 'imagenet':
        if depth_multiplier != 1:
            raise ValueError('If imagenet weights are being loaded, '
                             'depth multiplier must be 1')

        if alpha not in [0.25, 0.50, 0.75, 1.0]:
            raise ValueError('If imagenet weights are being loaded, '
                             'alpha can be one of'
                             '`0.25`, `0.50`, `0.75` or `1.0` only.')

        if rows != cols or rows not in [128, 160, 192, 224]:
            raise ValueError('If imagenet weights are being loaded, '
                             'input must have a static square shape (one of '
                             '(128,128), (160,160), (192,192), or (224, 224)).'
                             ' Input shape provided = %s' % (input_shape, ))

    if K.image_data_format() != 'channels_last':
        warnings.warn('The MobileNet family of models is only available '
                      'for the input data format "channels_last" '
                      '(width, height, channels). '
                      'However your settings specify the default '
                      'data format "channels_first" (channels, width, height).'
                      ' You should set `image_data_format="channels_last"` '
                      'in your Keras config located at ~/.keras/keras.json. '
                      'The model being returned right now will expect inputs '
                      'to follow the "channels_last" data format.')
        K.set_image_data_format('channels_last')
        old_data_format = 'channels_first'
    else:
        old_data_format = None

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    x = _conv_block(img_input, 32, alpha, strides=(2, 2))
    x = _depthwise_conv_block(x, 64, alpha, depth_multiplier, block_id=1)

    x = _depthwise_conv_block(x,
                              128,
                              alpha,
                              depth_multiplier,
                              strides=(2, 2),
                              block_id=2)
    x = _depthwise_conv_block(x, 128, alpha, depth_multiplier, block_id=3)

    x = _depthwise_conv_block(x,
                              256,
                              alpha,
                              depth_multiplier,
                              strides=(2, 2),
                              block_id=4)
    x = _depthwise_conv_block(x, 256, alpha, depth_multiplier, block_id=5)

    x = _depthwise_conv_block(x,
                              512,
                              alpha,
                              depth_multiplier,
                              strides=(2, 2),
                              block_id=6)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=7)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=8)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=9)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=10)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=11)

    x = _depthwise_conv_block(x,
                              1024,
                              alpha,
                              depth_multiplier,
                              strides=(2, 2),
                              block_id=12)
    x = _depthwise_conv_block(x, 1024, alpha, depth_multiplier, block_id=13)

    if include_top:
        if K.image_data_format() == 'channels_first':
            shape = (int(1024 * alpha), 1, 1)
        else:
            shape = (1, 1, int(1024 * alpha))

        x = GlobalAveragePooling2D()(x)
        x = Reshape(shape, name='reshape_1')(x)
        x = Dropout(dropout, name='dropout')(x)
        x = Conv2D(classes, (1, 1), padding='same', name='conv_preds')(x)
        x = Activation('softmax', name='act_softmax')(x)
        x = Reshape((classes, ), name='reshape_2')(x)
    else:
        if pooling == 'avg':
            x = GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model.
    model = Model(inputs, x, name='mobilenet_%0.2f_%s' % (alpha, rows))

    # load weights
    if weights == 'imagenet':
        if K.image_data_format() == 'channels_first':
            raise ValueError('Weights for "channels_last" format '
                             'are not available.')
        if alpha == 1.0:
            alpha_text = '1_0'
        elif alpha == 0.75:
            alpha_text = '7_5'
        elif alpha == 0.50:
            alpha_text = '5_0'
        else:
            alpha_text = '2_5'

        if include_top:
            model_name = 'mobilenet_%s_%d_tf.h5' % (alpha_text, rows)
            weigh_path = BASE_WEIGHT_PATH + model_name
            weights_path = get_file(model_name,
                                    weigh_path,
                                    cache_subdir='models')
        else:
            model_name = 'mobilenet_%s_%d_tf_no_top.h5' % (alpha_text, rows)
            weigh_path = BASE_WEIGHT_PATH + model_name
            weights_path = get_file(model_name,
                                    weigh_path,
                                    cache_subdir='models')
        model.load_weights(weights_path)

    if old_data_format:
        K.set_image_data_format(old_data_format)
    return model
Exemple #9
0
def InceptionResNetV2(include_top=True,
                      weights='imagenet',
                      input_tensor=None,
                      input_shape=None,
                      pooling=None,
                      classes=1000):
    """Instantiates the Inception-ResNet v2 architecture.
    Optionally loads weights pre-trained on ImageNet.
    Note that when using TensorFlow, for best performance you should
    set `"image_data_format": "channels_last"` in your Keras config
    at `~/.keras/keras.json`.
    The model and the weights are compatible with TensorFlow, Theano and
    CNTK backends. The data format convention used by the model is
    the one specified in your Keras config file.
    Note that the default input image size for this model is 299x299, instead
    of 224x224 as in the VGG16 and ResNet models. Also, the input preprocessing
    function is different (i.e., do not use `imagenet_utils.preprocess_input()`
    with this model. Use `preprocess_input()` defined in this module instead).
    # Arguments
        include_top: whether to include the fully-connected
            layer at the top of the network.
        weights: one of `None` (random initialization)
            or `'imagenet'` (pre-training on ImageNet).
        input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
            to use as image input for the model.
        input_shape: optional shape tuple, only to be specified
            if `include_top` is `False` (otherwise the input shape
            has to be `(299, 299, 3)` (with `'channels_last'` data format)
            or `(3, 299, 299)` (with `'channels_first'` data format).
            It should have exactly 3 inputs channels,
            and width and height should be no smaller than 139.
            E.g. `(150, 150, 3)` would be one valid value.
        pooling: Optional pooling mode for feature extraction
            when `include_top` is `False`.
            - `None` means that the output of the model will be
                the 4D tensor output of the last convolutional layer.
            - `'avg'` means that global average pooling
                will be applied to the output of the
                last convolutional layer, and thus
                the output of the model will be a 2D tensor.
            - `'max'` means that global max pooling will be applied.
        classes: optional number of classes to classify images
            into, only to be specified if `include_top` is `True`, and
            if no `weights` argument is specified.
    # Returns
        A Keras `Model` instance.
    # Raises
        ValueError: in case of invalid argument for `weights`,
            or invalid input shape.
    """
    if weights not in {'imagenet', None}:
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization) or `imagenet` '
                         '(pre-training on ImageNet).')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError('If using `weights` as imagenet with `include_top`'
                         ' as true, `classes` should be 1000')

    # Determine proper input shape
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=299,
                                      min_size=139,
                                      data_format=K.image_data_format(),
                                      require_flatten=False,
                                      weights=weights)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    # Stem block: 35 x 35 x 192
    x = conv2d_bn(img_input, 32, 3, strides=2, padding='valid')
    x = conv2d_bn(x, 32, 3, padding='valid')
    x = conv2d_bn(x, 64, 3)
    x = MaxPooling2D(3, strides=2)(x)
    x = conv2d_bn(x, 80, 1, padding='valid')
    x = conv2d_bn(x, 192, 3, padding='valid')
    x = MaxPooling2D(3, strides=2)(x)

    # Mixed 5b (Inception-A block): 35 x 35 x 320
    branch_0 = conv2d_bn(x, 96, 1)
    branch_1 = conv2d_bn(x, 48, 1)
    branch_1 = conv2d_bn(branch_1, 64, 5)
    branch_2 = conv2d_bn(x, 64, 1)
    branch_2 = conv2d_bn(branch_2, 96, 3)
    branch_2 = conv2d_bn(branch_2, 96, 3)
    branch_pool = AveragePooling2D(3, strides=1, padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 64, 1)
    branches = [branch_0, branch_1, branch_2, branch_pool]
    channel_axis = 1 if K.image_data_format() == 'channels_first' else 3
    x = Concatenate(axis=channel_axis, name='mixed_5b')(branches)

    # 10x block35 (Inception-ResNet-A block): 35 x 35 x 320
    for block_idx in range(1, 11):
        x = inception_resnet_block(x,
                                   scale=0.17,
                                   block_type='block35',
                                   block_idx=block_idx)

    # Mixed 6a (Reduction-A block): 17 x 17 x 1088
    branch_0 = conv2d_bn(x, 384, 3, strides=2, padding='valid')
    branch_1 = conv2d_bn(x, 256, 1)
    branch_1 = conv2d_bn(branch_1, 256, 3)
    branch_1 = conv2d_bn(branch_1, 384, 3, strides=2, padding='valid')
    branch_pool = MaxPooling2D(3, strides=2, padding='valid')(x)
    branches = [branch_0, branch_1, branch_pool]
    x = Concatenate(axis=channel_axis, name='mixed_6a')(branches)

    # 20x block17 (Inception-ResNet-B block): 17 x 17 x 1088
    for block_idx in range(1, 21):
        x = inception_resnet_block(x,
                                   scale=0.1,
                                   block_type='block17',
                                   block_idx=block_idx)

    # Mixed 7a (Reduction-B block): 8 x 8 x 2080
    branch_0 = conv2d_bn(x, 256, 1)
    branch_0 = conv2d_bn(branch_0, 384, 3, strides=2, padding='valid')
    branch_1 = conv2d_bn(x, 256, 1)
    branch_1 = conv2d_bn(branch_1, 288, 3, strides=2, padding='valid')
    branch_2 = conv2d_bn(x, 256, 1)
    branch_2 = conv2d_bn(branch_2, 288, 3)
    branch_2 = conv2d_bn(branch_2, 320, 3, strides=2, padding='valid')
    branch_pool = MaxPooling2D(3, strides=2, padding='valid')(x)
    branches = [branch_0, branch_1, branch_2, branch_pool]
    x = Concatenate(axis=channel_axis, name='mixed_7a')(branches)

    # 10x block8 (Inception-ResNet-C block): 8 x 8 x 2080
    for block_idx in range(1, 10):
        x = inception_resnet_block(x,
                                   scale=0.2,
                                   block_type='block8',
                                   block_idx=block_idx)
    x = inception_resnet_block(x,
                               scale=1.,
                               activation=None,
                               block_type='block8',
                               block_idx=10)

    # Final convolution block: 8 x 8 x 1536
    x = conv2d_bn(x, 1536, 1, name='conv_7b')

    if include_top:
        # Classification block
        x = GlobalAveragePooling2D(name='avg_pool')(x)
        x = Dense(classes, activation='softmax', name='predictions')(x)
    else:
        if pooling == 'avg':
            x = GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model
    model = Model(inputs, x, name='inception_resnet_v2')

    # Load weights
    if weights == 'imagenet':
        if K.image_data_format() == 'channels_first':
            if K.backend() == 'tensorflow':
                warnings.warn('You are using the TensorFlow backend, yet you '
                              'are using the Theano '
                              'image data format convention '
                              '(`image_data_format="channels_first"`). '
                              'For best performance, set '
                              '`image_data_format="channels_last"` in '
                              'your Keras config '
                              'at ~/.keras/keras.json.')
        if include_top:
            weights_filename = 'inception_resnet_v2_weights_tf_dim_ordering_tf_kernels.h5'
            weights_path = get_file(
                weights_filename,
                BASE_WEIGHT_URL + weights_filename,
                cache_subdir='models',
                file_hash='e693bd0210a403b3192acc6073ad2e96')
        else:
            weights_filename = 'inception_resnet_v2_weights_tf_dim_ordering_tf_kernels_notop.h5'
            weights_path = get_file(
                weights_filename,
                BASE_WEIGHT_URL + weights_filename,
                cache_subdir='models',
                file_hash='d19885ff4a710c122648d3b5c3b684e4')
        model.load_weights(weights_path)

    return model
                    default='../dataset/flowers/flower_photos')
parser.add_argument('--training_percentage', type=float, default=0.8)
parser.add_argument('--testing_percentage', type=float, default=0.2)
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--input_image_size', type=int, default=299)
FLAGS, unparsed = parser.parse_known_args()

# load pretrained model
model_inception_v3 = inception_v3.InceptionV3(include_top=False,
                                              weights='imagenet',
                                              input_tensor=None,
                                              input_shape=None,
                                              pooling=None)
# add a global spatial average pooling layer
x = model_inception_v3.output
x = GlobalAveragePooling2D()(x)
# add a fully-connected layer
x = Dense(1024, activation='relu')(x)
# and a logistic layer
predictions = Dense(5, activation='softmax')(x)
# the model for transform learning
model = Model(inputs=model_inception_v3.input, outputs=predictions)
print model.summary()

# first: train only the top layers (which were randomly initialized)
# i.e. freeze all convolutional InceptionV3 layers
for layer in model_inception_v3.layers:
    layer.trainable = False

# load dataset
# flowers_dataset = create_image_dataset(FLAGS.image_dir, training_percentage=FLAGS.training_percentage,
Exemple #11
0
def SSD300(input_shape, num_classes=21):
    """SSD300 architecture.

    # Arguments
        input_shape: Shape of the input image,
            expected to be either (300, 300, 3) or (3, 300, 300)(not tested).
        num_classes: Number of classes including background.

    # References
        https://arxiv.org/abs/1512.02325
    """
    net = {}
    # Block 1
    input_tensor = input_tensor = Input(shape=input_shape)
    img_size = (input_shape[1], input_shape[0])
    net['input'] = input_tensor
    net['conv1_1'] = Convolution2D(64, (3, 3),
                                   activation='relu',
                                   padding='same',
                                   name='conv1_1')(net['input'])

    net['conv1_2'] = Convolution2D(64, (3, 3),
                                   activation='relu',
                                   padding='same',
                                   name='conv1_2')(net['conv1_1'])

    net['pool1'] = MaxPooling2D((2, 2),
                                strides=(2, 2),
                                padding='same',
                                name='pool1')(net['conv1_2'])
    # Block 2
    net['conv2_1'] = Convolution2D(128, (3, 3),
                                   activation='relu',
                                   padding='same',
                                   name='conv2_1')(net['pool1'])

    net['conv2_2'] = Convolution2D(128, (3, 3),
                                   activation='relu',
                                   padding='same',
                                   name='conv2_2')(net['conv2_1'])
    net['pool2'] = MaxPooling2D((2, 2),
                                strides=(2, 2),
                                padding='same',
                                name='pool2')(net['conv2_2'])

    # Block 3
    net['conv3_1'] = Convolution2D(256, (3, 3),
                                   activation='relu',
                                   padding='same',
                                   name='conv3_1')(net['pool2'])
    net['conv3_2'] = Convolution2D(256, (3, 3),
                                   activation='relu',
                                   padding='same',
                                   name='conv3_2')(net['conv3_1'])
    net['conv3_3'] = Convolution2D(256, (3, 3),
                                   activation='relu',
                                   padding='same',
                                   name='conv3_3')(net['conv3_2'])
    net['pool3'] = MaxPooling2D((2, 2),
                                strides=(2, 2),
                                padding='same',
                                name='pool3')(net['conv3_3'])
    # Block 4
    net['conv4_1'] = Convolution2D(512, (3, 3),
                                   activation='relu',
                                   padding='same',
                                   name='conv4_1')(net['pool3'])
    net['conv4_2'] = Convolution2D(512, (3, 3),
                                   activation='relu',
                                   padding='same',
                                   name='conv4_2')(net['conv4_1'])
    net['conv4_3'] = Convolution2D(512, (3, 3),
                                   activation='relu',
                                   padding='same',
                                   name='conv4_3')(net['conv4_2'])
    net['pool4'] = MaxPooling2D((2, 2),
                                strides=(2, 2),
                                padding='same',
                                name='pool4')(net['conv4_3'])
    # Block 5
    net['conv5_1'] = Convolution2D(512, (3, 3),
                                   activation='relu',
                                   padding='same',
                                   name='conv5_1')(net['pool4'])
    net['conv5_2'] = Convolution2D(512, (3, 3),
                                   activation='relu',
                                   padding='same',
                                   name='conv5_2')(net['conv5_1'])
    net['conv5_3'] = Convolution2D(512, (3, 3),
                                   activation='relu',
                                   padding='same',
                                   name='conv5_3')(net['conv5_2'])
    net['pool5'] = MaxPooling2D((3, 3),
                                strides=(1, 1),
                                padding='same',
                                name='pool5')(net['conv5_3'])
    # FC6
    net['fc6'] = Convolution2D(1024, (3, 3),
                               dilation_rate=(6, 6),
                               activation='relu',
                               padding='same',
                               name='fc6')(net['pool5'])
    # x = Dropout(0.5, name='drop6')(x)
    # FC7
    net['fc7'] = Convolution2D(1024, (1, 1),
                               activation='relu',
                               padding='same',
                               name='fc7')(net['fc6'])
    # x = Dropout(0.5, name='drop7')(x)
    # Block 6
    net['conv6_1'] = Convolution2D(256, (1, 1),
                                   activation='relu',
                                   padding='same',
                                   name='conv6_1')(net['fc7'])

    net['conv6_2'] = Convolution2D(512, (3, 3),
                                   strides=(2, 2),
                                   activation='relu',
                                   padding='same',
                                   name='conv6_2')(net['conv6_1'])
    # Block 7
    net['conv7_1'] = Convolution2D(128, (1, 1),
                                   activation='relu',
                                   padding='same',
                                   name='conv7_1')(net['conv6_2'])
    net['conv7_2'] = ZeroPadding2D()(net['conv7_1'])
    net['conv7_2'] = Convolution2D(256, (3, 3),
                                   strides=(2, 2),
                                   activation='relu',
                                   padding='valid',
                                   name='conv7_2')(net['conv7_2'])
    # Block 8
    net['conv8_1'] = Convolution2D(128, (1, 1),
                                   activation='relu',
                                   padding='same',
                                   name='conv8_1')(net['conv7_2'])
    net['conv8_2'] = Convolution2D(256, (3, 3),
                                   strides=(2, 2),
                                   activation='relu',
                                   padding='same',
                                   name='conv8_2')(net['conv8_1'])
    # Last Pool
    net['pool6'] = GlobalAveragePooling2D(name='pool6')(net['conv8_2'])
    # Prediction from conv4_3
    net['conv4_3_norm'] = Normalize(20, name='conv4_3_norm')(net['conv4_3'])
    num_priors = 3
    x = Convolution2D(num_priors * 4, (3, 3),
                      padding='same',
                      name='conv4_3_norm_mbox_loc')(net['conv4_3_norm'])
    net['conv4_3_norm_mbox_loc'] = x
    flatten = Flatten(name='conv4_3_norm_mbox_loc_flat')
    net['conv4_3_norm_mbox_loc_flat'] = flatten(net['conv4_3_norm_mbox_loc'])
    name = 'conv4_3_norm_mbox_conf'
    if num_classes != 21:
        name += '_{}'.format(num_classes)
    x = Convolution2D(num_priors * num_classes, (3, 3),
                      padding='same',
                      name=name)(net['conv4_3_norm'])
    net['conv4_3_norm_mbox_conf'] = x
    flatten = Flatten(name='conv4_3_norm_mbox_conf_flat')
    net['conv4_3_norm_mbox_conf_flat'] = flatten(net['conv4_3_norm_mbox_conf'])
    priorbox = PriorBox(img_size,
                        30.0,
                        aspect_ratios=[2],
                        variances=[0.1, 0.1, 0.2, 0.2],
                        name='conv4_3_norm_mbox_priorbox')
    net['conv4_3_norm_mbox_priorbox'] = priorbox(net['conv4_3_norm'])
    # Prediction from fc7
    num_priors = 6
    net['fc7_mbox_loc'] = Convolution2D(num_priors * 4, (3, 3),
                                        padding='same',
                                        name='fc7_mbox_loc')(net['fc7'])
    flatten = Flatten(name='fc7_mbox_loc_flat')
    net['fc7_mbox_loc_flat'] = flatten(net['fc7_mbox_loc'])
    name = 'fc7_mbox_conf'
    if num_classes != 21:
        name += '_{}'.format(num_classes)
    net['fc7_mbox_conf'] = Convolution2D(num_priors * num_classes, (3, 3),
                                         padding='same',
                                         name=name)(net['fc7'])
    flatten = Flatten(name='fc7_mbox_conf_flat')
    net['fc7_mbox_conf_flat'] = flatten(net['fc7_mbox_conf'])
    priorbox = PriorBox(img_size,
                        60.0,
                        max_size=114.0,
                        aspect_ratios=[2, 3],
                        variances=[0.1, 0.1, 0.2, 0.2],
                        name='fc7_mbox_priorbox')
    net['fc7_mbox_priorbox'] = priorbox(net['fc7'])
    # Prediction from conv6_2
    num_priors = 6
    x = Convolution2D(num_priors * 4, (3, 3),
                      padding='same',
                      name='conv6_2_mbox_loc')(net['conv6_2'])
    net['conv6_2_mbox_loc'] = x
    flatten = Flatten(name='conv6_2_mbox_loc_flat')
    net['conv6_2_mbox_loc_flat'] = flatten(net['conv6_2_mbox_loc'])
    name = 'conv6_2_mbox_conf'
    if num_classes != 21:
        name += '_{}'.format(num_classes)
    x = Convolution2D(num_priors * num_classes, (3, 3),
                      padding='same',
                      name=name)(net['conv6_2'])
    net['conv6_2_mbox_conf'] = x
    flatten = Flatten(name='conv6_2_mbox_conf_flat')
    net['conv6_2_mbox_conf_flat'] = flatten(net['conv6_2_mbox_conf'])
    priorbox = PriorBox(img_size,
                        114.0,
                        max_size=168.0,
                        aspect_ratios=[2, 3],
                        variances=[0.1, 0.1, 0.2, 0.2],
                        name='conv6_2_mbox_priorbox')
    net['conv6_2_mbox_priorbox'] = priorbox(net['conv6_2'])
    # Prediction from conv7_2
    num_priors = 6
    x = Convolution2D(num_priors * 4, (3, 3),
                      padding='same',
                      name='conv7_2_mbox_loc')(net['conv7_2'])
    net['conv7_2_mbox_loc'] = x
    flatten = Flatten(name='conv7_2_mbox_loc_flat')
    net['conv7_2_mbox_loc_flat'] = flatten(net['conv7_2_mbox_loc'])
    name = 'conv7_2_mbox_conf'
    if num_classes != 21:
        name += '_{}'.format(num_classes)
    x = Convolution2D(num_priors * num_classes, (3, 3),
                      padding='same',
                      name=name)(net['conv7_2'])
    net['conv7_2_mbox_conf'] = x
    flatten = Flatten(name='conv7_2_mbox_conf_flat')
    net['conv7_2_mbox_conf_flat'] = flatten(net['conv7_2_mbox_conf'])
    priorbox = PriorBox(img_size,
                        168.0,
                        max_size=222.0,
                        aspect_ratios=[2, 3],
                        variances=[0.1, 0.1, 0.2, 0.2],
                        name='conv7_2_mbox_priorbox')
    net['conv7_2_mbox_priorbox'] = priorbox(net['conv7_2'])
    # Prediction from conv8_2
    num_priors = 6
    x = Convolution2D(num_priors * 4, (3, 3),
                      padding='same',
                      name='conv8_2_mbox_loc')(net['conv8_2'])
    net['conv8_2_mbox_loc'] = x
    flatten = Flatten(name='conv8_2_mbox_loc_flat')
    net['conv8_2_mbox_loc_flat'] = flatten(net['conv8_2_mbox_loc'])
    name = 'conv8_2_mbox_conf'
    if num_classes != 21:
        name += '_{}'.format(num_classes)
    x = Convolution2D(num_priors * num_classes, (3, 3),
                      padding='same',
                      name=name)(net['conv8_2'])
    net['conv8_2_mbox_conf'] = x
    flatten = Flatten(name='conv8_2_mbox_conf_flat')
    net['conv8_2_mbox_conf_flat'] = flatten(net['conv8_2_mbox_conf'])
    priorbox = PriorBox(img_size,
                        222.0,
                        max_size=276.0,
                        aspect_ratios=[2, 3],
                        variances=[0.1, 0.1, 0.2, 0.2],
                        name='conv8_2_mbox_priorbox')
    net['conv8_2_mbox_priorbox'] = priorbox(net['conv8_2'])
    # Prediction from pool6
    num_priors = 6
    x = Dense(num_priors * 4, name='pool6_mbox_loc_flat')(net['pool6'])
    net['pool6_mbox_loc_flat'] = x
    name = 'pool6_mbox_conf_flat'
    if num_classes != 21:
        name += '_{}'.format(num_classes)
    x = Dense(num_priors * num_classes, name=name)(net['pool6'])
    net['pool6_mbox_conf_flat'] = x
    priorbox = PriorBox(img_size,
                        276.0,
                        max_size=330.0,
                        aspect_ratios=[2, 3],
                        variances=[0.1, 0.1, 0.2, 0.2],
                        name='pool6_mbox_priorbox')
    target_shape = (1, 1, 256)
    net['pool6_reshaped'] = Reshape(target_shape,
                                    name='pool6_reshaped')(net['pool6'])
    net['pool6_mbox_priorbox'] = priorbox(net['pool6_reshaped'])
    # Gather all predictions
    net['mbox_loc'] = concatenate([
        net['conv4_3_norm_mbox_loc_flat'], net['fc7_mbox_loc_flat'],
        net['conv6_2_mbox_loc_flat'], net['conv7_2_mbox_loc_flat'],
        net['conv8_2_mbox_loc_flat'], net['pool6_mbox_loc_flat']
    ],
                                  axis=1,
                                  name='mbox_loc')
    net['mbox_conf'] = concatenate([
        net['conv4_3_norm_mbox_conf_flat'], net['fc7_mbox_conf_flat'],
        net['conv6_2_mbox_conf_flat'], net['conv7_2_mbox_conf_flat'],
        net['conv8_2_mbox_conf_flat'], net['pool6_mbox_conf_flat']
    ],
                                   axis=1,
                                   name='mbox_conf')
    net['mbox_priorbox'] = concatenate([
        net['conv4_3_norm_mbox_priorbox'], net['fc7_mbox_priorbox'],
        net['conv6_2_mbox_priorbox'], net['conv7_2_mbox_priorbox'],
        net['conv8_2_mbox_priorbox'], net['pool6_mbox_priorbox']
    ],
                                       axis=1,
                                       name='mbox_priorbox')
    num_boxes = K.int_shape(net['mbox_loc'])[-1] // 4
    net['mbox_loc'] = Reshape((num_boxes, 4),
                              name='mbox_loc_final')(net['mbox_loc'])
    net['mbox_conf'] = Reshape((num_boxes, num_classes),
                               name='mbox_conf_logits')(net['mbox_conf'])
    net['mbox_conf'] = Activation('softmax',
                                  name='mbox_conf_final')(net['mbox_conf'])
    net['predictions'] = concatenate(
        [net['mbox_loc'], net['mbox_conf'], net['mbox_priorbox']],
        axis=2,
        #axis = 0,
        name='predictions')
    model = Model(net['input'], net['predictions'])
    return model
Exemple #12
0
def VGG16(include_top=True,
          weights='imagenet',
          input_tensor=None,
          input_shape=None,
          pooling=None,
          classes=1000):
    """Instantiates the VGG16 architecture.

  Optionally loads weights pre-trained
  on ImageNet. Note that when using TensorFlow,
  for best performance you should set
  `image_data_format="channels_last"` in your Keras config
  at ~/.keras/keras.json.

  The model and the weights are compatible with both
  TensorFlow and Theano. The data format
  convention used by the model is the one
  specified in your Keras config file.

  Arguments:
      include_top: whether to include the 3 fully-connected
          layers at the top of the network.
      weights: one of `None` (random initialization)
          or "imagenet" (pre-training on ImageNet).
      input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
          to use as image input for the model.
      input_shape: optional shape tuple, only to be specified
          if `include_top` is False (otherwise the input shape
          has to be `(224, 224, 3)` (with `channels_last` data format)
          or `(3, 224, 224)` (with `channels_first` data format).
          It should have exactly 3 inputs channels,
          and width and height should be no smaller than 48.
          E.g. `(200, 200, 3)` would be one valid value.
      pooling: Optional pooling mode for feature extraction
          when `include_top` is `False`.
          - `None` means that the output of the model will be
              the 4D tensor output of the
              last convolutional layer.
          - `avg` means that global average pooling
              will be applied to the output of the
              last convolutional layer, and thus
              the output of the model will be a 2D tensor.
          - `max` means that global max pooling will
              be applied.
      classes: optional number of classes to classify images
          into, only to be specified if `include_top` is True, and
          if no `weights` argument is specified.

  Returns:
      A Keras model instance.

  Raises:
      ValueError: in case of invalid argument for `weights`,
          or invalid input shape.
  """
    ### how many weights option can we be allowed
    if weights not in {'imagenet', None}:
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization) or `imagenet` '
                         '(pre-training on ImageNet).')

    ### if use imagenet weights and add last 3 dense layers, then class should be 1000
    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError('If using `weights` as imagenet with `include_top`'
                         ' as true, `classes` should be 1000')

    ### set input shape : (224, 224, 3)
    # default input shape for VGG16 model, designed for imagenet dataset
    input_shape = _obtain_input_shape(
        input_shape,  # if set must be a tuple of 3 integers (50, 50, 3)
        default_size=224,  # if input_shape set, here must be None
        min_size=48,  # 48, but freely change it to your need
        data_format=K.image_data_format(
        ),  # 'channels_first' or 'channels_last'
        include_top=include_top
    )  # True, then must use 224 or False to be other number

    ### Create input tensor: real tensor or container?
    if input_tensor is None:
        # create input tensor placeholder
        img_input = Input(shape=input_shape)
    else:
        img_input = Input(tensor=input_tensor, shape=input_shape)

    # Block 1
    x = Conv2D(64, (3, 3),
               activation='relu',
               padding='same',
               name='block1_conv1')(img_input)

    ## how to access weights of each layer
    block1_conv1 = x
    block1_conv1_bias = block1_conv1.graph._collections['trainable_variables'][
        -1]  # bias
    block1_conv1_kernel = block1_conv1.graph._collections[
        'trainable_variables'][-2]  # kernel

    x = Conv2D(64, (3, 3),
               activation='relu',
               padding='same',
               name='block1_conv2')(x)
    block1_conv2 = x
    block1_conv2_bias = block1_conv2.graph._collections['trainable_variables'][
        -1]  # bias
    block1_conv2_kernel = block1_conv2.graph._collections[
        'trainable_variables'][-2]  # kernel

    x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)
    block1_pool = x
    # access trainable_variables or weights with biases
    block1_pool.graph._collections['variables'][-1]  # bias
    block1_pool.graph._collections['variables'][-2]  # kernel

    # Block 2
    x = Conv2D(128, (3, 3),
               activation='relu',
               padding='same',
               name='block2_conv1')(x)
    block2_conv1 = x

    x = Conv2D(128, (3, 3),
               activation='relu',
               padding='same',
               name='block2_conv2')(x)
    block2_conv2 = x

    x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)
    block2_pool = x

    # Block 3
    x = Conv2D(256, (3, 3),
               activation='relu',
               padding='same',
               name='block3_conv1')(x)
    block3_conv1 = x

    x = Conv2D(256, (3, 3),
               activation='relu',
               padding='same',
               name='block3_conv2')(x)
    block3_conv2 = x

    x = Conv2D(256, (3, 3),
               activation='relu',
               padding='same',
               name='block3_conv3')(x)
    block3_conv3 = x

    x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)
    block3_pool = x

    # Block 4
    x = Conv2D(512, (3, 3),
               activation='relu',
               padding='same',
               name='block4_conv1')(x)
    block4_conv1 = x

    x = Conv2D(512, (3, 3),
               activation='relu',
               padding='same',
               name='block4_conv2')(x)
    block4_conv2 = x

    x = Conv2D(512, (3, 3),
               activation='relu',
               padding='same',
               name='block4_conv3')(x)
    block4_conv3 = x

    x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)
    block4_pool = x

    # Block 5
    x = Conv2D(512, (3, 3),
               activation='relu',
               padding='same',
               name='block5_conv1')(x)
    block5_conv1 = x

    x = Conv2D(512, (3, 3),
               activation='relu',
               padding='same',
               name='block5_conv2')(x)
    block5_conv2 = x

    x = Conv2D(512, (3, 3),
               activation='relu',
               padding='same',
               name='block5_conv3')(x)
    block5_conv3 = x

    x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)
    block5_pool = x

    if include_top:
        # Classification block
        x = Flatten(name='flatten')(x)
        flatten = x
        x = Dense(4096, activation='relu', name='fc1')(x)
        fc1 = x
        x = Dense(4096, activation='relu', name='fc2')(x)
        fc2 = x
        x = Dense(classes, activation='softmax', name='predictions')(x)
        predictions = x

    else:
        if pooling == 'avg':
            x = GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = Model(inputs, x, name='vgg16')

    # load weights
    if weights == 'imagenet':
        if include_top:
            weights_path = get_file(
                'vgg16_weights_tf_dim_ordering_tf_kernels.h5',
                WEIGHTS_PATH,
                cache_subdir='models')
        else:
            weights_path = get_file(
                'vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5',
                WEIGHTS_PATH_NO_TOP,
                cache_subdir='models')
        model.load_weights(weights_path)
        if K.backend() == 'theano':
            layer_utils.convert_all_kernels_in_model(model)

        if K.image_data_format() == 'channels_first':
            if include_top:
                maxpool = model.get_layer(name='block5_pool')
                shape = maxpool.output_shape[1:]
                dense = model.get_layer(name='fc1')
                layer_utils.convert_dense_weights_data_format(
                    dense, shape, 'channels_first')
    return model