def get_endpoints(self, x, nb_classes=None):
     with slim.arg_scope(self._model['arg_scope']()):
         # print("get_endpoints", self.name)
         logits, end_points = self._model['graph'](x, num_classes=self.nb_classes,is_training=False,reuse=tf.AUTO_REUSE)
         if 'Logits' not in end_points:
             end_points['Logits'] = logits
         if (len(end_points['Logits'].shape) == 4):
             end_points['Logits'] = tf.squeeze(end_points['Logits'] , [1,2])
         if 'Predictions' not in end_points:
             end_points['Predictions'] = layers_lib.softmax(end_points['Logits'], scope='predictions')
     return end_points
Exemple #2
0
def resnet_v1(inputs,
              blocks,
              num_classes=None,
              is_training=True,
              global_pool=True,
              output_stride=None,
              include_root_block=True,
              reuse=None,
              scope=None):
    with variable_scope.variable_scope(scope,
                                       'resnet_v1', [inputs],
                                       reuse=reuse) as sc:
        end_points_collection = sc.original_name_scope + '_end_points'
        with arg_scope([layers.conv2d, naive, resnet_utils.stack_blocks_dense],
                       outputs_collections=end_points_collection):
            with arg_scope([layers.batch_norm], is_training=is_training):
                net = inputs
                if include_root_block:
                    if output_stride is not None:
                        if output_stride % 4 != 0:
                            raise ValueError(
                                'The output_stride needs to be a multiple of 4.'
                            )
                        output_stride /= 4
                    net = resnet_utils.conv2d_same(net,
                                                   64,
                                                   7,
                                                   stride=2,
                                                   scope='conv1')
                    net = layers_lib.max_pool2d(net, [3, 3],
                                                stride=2,
                                                scope='pool1')
                net = resnet_utils.stack_blocks_dense(net, blocks,
                                                      output_stride)
                if global_pool:
                    # Global average pooling.
                    net = math_ops.reduce_mean(net, [1, 2],
                                               name='pool5',
                                               keep_dims=True)
                if num_classes is not None:
                    net = layers.conv2d(net,
                                        num_classes, [1, 1],
                                        activation_fn=None,
                                        normalizer_fn=None,
                                        scope='logits')
                end_points = utils.convert_collection_to_dict(
                    end_points_collection)
                if num_classes is not None:
                    end_points['predictions'] = layers_lib.softmax(
                        net, scope='predictions')
                return net, end_points
    def __call__(self, ens_x_input, vgg_x_input, inc_x_input, tcd_x_input):
        """Constructs model and return probabilities for given input."""
        reuse = True if self.built else None
        logits = None
        aux_logits = None
        weights = [[0.7, 0.1], [0.2, 0.1]]
        all_inputs = [[ens_x_input, tcd_x_input], [inc_x_input, tcd_x_input]]
        scopes = [
            inception_resnet_v2.inception_resnet_v2_arg_scope(),
            inception.inception_v3_arg_scope()
        ]
        reuse_flags = [reuse, True]
        for model_idx, model in enumerate(
            [inception_resnet_v2.inception_resnet_v2, inception.inception_v3]):
            with slim.arg_scope(scopes[model_idx]):
                for idx, inputs in enumerate(all_inputs[model_idx]):
                    result = model(inputs,
                                   num_classes=self.num_classes,
                                   is_training=False,
                                   reuse=reuse_flags[idx])
                    weight = weights[model_idx][idx]
                    # :1 is for slicing out the background class
                    if logits == None:
                        logits = result[0][:, 1:] * weight
                        aux_logits = result[1]['AuxLogits'][:, 1:] * weight
                    else:
                        logits += result[0][:, 1:] * weight
                        aux_logits += result[1]['AuxLogits'][:, 1:] * weight

        with slim.arg_scope(vgg.vgg_arg_scope()):
            weight = 0.1
            result = vgg.vgg_16(vgg_x_input,
                                num_classes=1000,
                                is_training=False)
            logits += result[0] * weight

        with slim.arg_scope(resnet_utils.resnet_arg_scope()):
            weight = 0.05
            result = resnet_v2.resnet_v2_152(vgg_x_input,
                                             num_classes=self.num_classes,
                                             reuse=reuse)
            logits += tf.squeeze(result[0])[:, 1:] * weight

        self.built = True
        aux_weight = 0.8
        logits += aux_logits * aux_weight

        predictions = layers_lib.softmax(logits)
        return predictions
Exemple #4
0
def resnet_v2(
        inputs, blocks, num_classes=None, is_training=True, global_pool=True, output_stride=None,
        include_root_block=True, centered_stride=False, reuse=None, scope=None):
    """Generator for v2 (preactivation) ResNet models.

    This function generates a family of ResNet v2 models. See the resnet_v2_*()
    methods for specific model instantiations, obtained by selecting different
    block instantiations that produce ResNets of various depths.

    Training for image classification on Imagenet is usually done with [224, 224]
    inputs, resulting in [7, 7] feature maps at the output of the last ResNet
    block for the ResNets defined in [1] that have nominal stride equal to 32.
    However, for dense prediction tasks we advise that one uses inputs with
    spatial dimensions that are multiples of 32 plus 1, e.g., [321, 321]. In
    this case the feature maps at the ResNet output will have spatial shape
    [(height - 1) / output_stride + 1, (width - 1) / output_stride + 1]
    and corners exactly aligned with the input image corners, which greatly
    facilitates alignment of the features to the image. Using as input [225, 225]
    images results in [8, 8] feature maps at the output of the last ResNet block.

    For dense prediction tasks, the ResNet needs to run in fully-convolutional
    (FCN) mode and global_pool needs to be set to False. The ResNets in [1, 2] all
    have nominal stride equal to 32 and a good choice in FCN mode is to use
    output_stride=16 in order to increase the density of the computed features at
    small computational and memory overhead, cf. http://arxiv.org/abs/1606.00915.

    Args:
      inputs: A tensor of size [batch, height_in, width_in, channels].
      blocks: A list of length equal to the number of ResNet blocks. Each element
        is a resnet_utils.Block object describing the units in the block.
      num_classes: Number of predicted classes for classification tasks. If None
        we return the features before the logit layer.
      is_training: whether batch_norm layers are in training mode.
      global_pool: If True, we perform global average pooling before computing the
        logits. Set to True for image classification, False for dense prediction.
      output_stride: If None, then the output will be computed at the nominal
        network stride. If output_stride is not None, it specifies the requested
        ratio of input to output spatial resolution.
      include_root_block: If True, include the initial convolution followed by
        max-pooling, if False excludes it. If excluded, `inputs` should be the
        results of an activation-less convolution.
      reuse: whether or not the network and its variables should be reused. To be
        able to reuse 'scope' must be given.
      scope: Optional variable_scope.


    Returns:
      net: A rank-4 tensor of size [batch, height_out, width_out, channels_out].
        If global_pool is False, then height_out and width_out are reduced by a
        factor of output_stride compared to the respective height_in and width_in,
        else both height_out and width_out equal one. If num_classes is None, then
        net is the output of the last ResNet block, potentially after global
        average pooling. If num_classes is not None, net contains the pre-softmax
        activations.
      end_points: A dictionary from components of the network to the corresponding
        activation.

    Raises:
      ValueError: If the target output_stride is not valid.
    """

    with variable_scope.variable_scope(
            scope, 'resnet_v2', [inputs], reuse=reuse) as sc:
        end_points_collection = sc.original_name_scope + '_end_points'
        with arg_scope(
                [layers_lib.conv2d, bottleneck, resnet_utils.stack_blocks_dense],
                outputs_collections=end_points_collection):
            with arg_scope([layers.batch_norm], is_training=is_training):
                net = inputs
                if include_root_block:
                    if output_stride is not None:
                        if output_stride % 4 != 0:
                            raise ValueError('The output_stride needs to be a multiple of 4.')
                        output_stride /= 4
                    # We do not include batch normalization or activation functions in
                    # conv1 because the first ResNet unit will perform these. Cf.
                    # Appendix of [2].
                    with arg_scope([layers_lib.conv2d], activation_fn=None, normalizer_fn=None):
                        net = resnet_utils.conv2d_same(net, 64, 7, stride=2, scope='conv1')

                    net = resnet_utils.max_pool2d_same(
                        net, 3, stride=2, scope='pool1',
                        centered_stride=centered_stride and output_stride == 4)
                net = resnet_utils.stack_blocks_dense(net, blocks, output_stride)
                # This is needed because the pre-activation variant does not have batch
                # normalization or activation functions in the residual unit output. See
                # Appendix of [2].
                net = slim.batch_norm(net, activation_fn=nn_ops.relu, scope='postnorm')
                if global_pool:
                    # Global average pooling.
                    net = math_ops.reduce_mean(net, tfu.image_axes(), name='pool5', keepdims=True)
                if num_classes is not None:
                    net = layers_lib.conv2d(
                        net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None,
                        scope='logits')
                # Convert end_points_collection into a dictionary of end_points.
                end_points = utils.convert_collection_to_dict(end_points_collection)
                if num_classes is not None:
                    end_points['predictions'] = layers.softmax(net, scope='predictions')
                return net, end_points
def inception_v4(inputs,
                 num_classes=1001,
                 is_training=True,
                 dropout_keep_prob=0.8,
                 reuse=None,
                 scope='InceptionV4',
                 create_aux_logits=True):
    """Creates the Inception V4 model.

  Args:
    inputs: a 4-D tensor of size [batch_size, height, width, 3].
    num_classes: number of predicted classes. If 0 or None, the logits layer
      is omitted and the input features to the logits layer (before dropout)
      are returned instead.
    is_training: whether is training or not.
    dropout_keep_prob: float, the fraction to keep before final layer.
    reuse: whether or not the network and its variables should be reused. To be
      able to reuse 'scope' must be given.
    scope: Optional variable_scope.
    create_aux_logits: Whether to include the auxiliary logits.

  Returns:
    net: a Tensor with the logits (pre-softmax activations) if num_classes
      is a non-zero integer, or the non-dropped input to the logits layer
      if num_classes is 0 or None.
    end_points: the set of end_points from the inception model.
  """
    end_points = {}
    with variable_scope.variable_scope(scope,
                                       'InceptionV4', [inputs],
                                       reuse=reuse) as scope:
        with slim.arg_scope([slim.batch_norm, slim.dropout],
                            is_training=is_training):
            net, end_points = inception_v4_base(inputs, scope=scope)

            with slim.arg_scope(
                [slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
                    stride=1,
                    padding='SAME'):
                # Auxiliary Head logits
                if create_aux_logits and num_classes:
                    with variable_scope.variable_scope('AuxLogits'):
                        # 17 x 17 x 1024
                        aux_logits = end_points['Mixed_6h']
                        aux_logits = slim.avg_pool2d(aux_logits, [5, 5],
                                                     stride=3,
                                                     padding='VALID',
                                                     scope='AvgPool_1a_5x5')
                        aux_logits = slim.conv2d(aux_logits,
                                                 128, [1, 1],
                                                 scope='Conv2d_1b_1x1')
                        aux_logits = slim.conv2d(aux_logits,
                                                 768,
                                                 aux_logits.get_shape()[1:3],
                                                 padding='VALID',
                                                 scope='Conv2d_2a')
                        aux_logits = slim.flatten(aux_logits)
                        aux_logits = slim.fully_connected(aux_logits,
                                                          num_classes,
                                                          activation_fn=None,
                                                          scope='Aux_logits')
                        end_points['AuxLogits'] = aux_logits

                # Final pooling and prediction
                # TODO(sguada,arnoegw): Consider adding a parameter global_pool which
                # can be set to False to disable pooling here (as in resnet_*()).
                with variable_scope.variable_scope('Logits'):
                    # 8 x 8 x 1536
                    kernel_size = net.get_shape()[1:3]
                    if kernel_size.is_fully_defined():
                        net = slim.avg_pool2d(net,
                                              kernel_size,
                                              padding='VALID',
                                              scope='AvgPool_1a')
                    else:
                        net = math_ops.reduce_mean(net, [1, 2],
                                                   keep_dims=True,
                                                   name='global_pool')
                    end_points['global_pool'] = net
                    if not num_classes:
                        return net, end_points
                    # 1 x 1 x 1536
                    net = slim.dropout(net,
                                       dropout_keep_prob,
                                       scope='Dropout_1b')
                    net = slim.flatten(net, scope='PreLogitsFlatten')
                    end_points['PreLogitsFlatten'] = net
                    # 1536
                    logits = slim.fully_connected(net,
                                                  num_classes,
                                                  activation_fn=None,
                                                  scope='Logits')
                    end_points['Logits'] = logits
                    end_points['Predictions'] = layers_lib.softmax(
                        logits, scope='Predictions')
        return logits, end_points
def model_fn(features, labels, mode, params):
  """
  Based on https://github.com/tensorflow/tpu/blob/master/models/experimental/inception/inception_v2_tpu_model.py
  :param features:
  :param labels:
  :param mode:
  :param params:
  :return:
  """
  tf.summary.image('0_input', features, max_outputs=4)
  training = mode == tf.estimator.ModeKeys.TRAIN

  # 224 x 224 x 3
  end_point = 'Conv2d_1a_7x7'
  net = layers.conv2d(features, 64, [7, 7], stride=2, weights_initializer=trunc_normal(1.0), activation_fn=None, scope=end_point)
  net = tf.layers.batch_normalization(net, training=training, name='{}_bn'.format(end_point))
  net = tf.nn.relu(net, name='{}_act'.format(end_point))
  tf.summary.image('1_{}'.format(end_point), net[:, :, :, 0:3], max_outputs=4)

  # 112 x 112 x 64
  end_point = 'MaxPool_2a_3x3'
  net = layers_lib.max_pool2d(net, [3, 3], scope=end_point, stride=2, padding='SAME')
  tf.summary.image('2_{}'.format(end_point), net[:, :, :, 0:3], max_outputs=4)

  # 56 x 56 x 64
  end_point = 'Conv2d_2b_1x1'
  net = layers.conv2d(net, 64, [1, 1], activation_fn=None, scope=end_point, weights_initializer=trunc_normal(0.1))
  net = tf.layers.batch_normalization(net, training=training, name='{}_bn'.format(end_point))
  net = tf.nn.relu(net, name='{}_act'.format(end_point))
  tf.summary.image('3_{}'.format(end_point), net[:, :, :, 0:3], max_outputs=4)

  # 56 x 56 x 64
  end_point = 'Conv2d_2c_3x3'
  net = layers.conv2d(net, 192, [3, 3], activation_fn=None, scope=end_point)
  net = tf.layers.batch_normalization(net, training=training, name='{}_bn'.format(end_point))
  net = tf.nn.relu(net, name='{}_act'.format(end_point))
  tf.summary.image('4_{}'.format(end_point), net[:, :, :, 0:3], max_outputs=4)

  # 56 x 56 x 192
  end_point = 'MaxPool_3a_3x3'
  net = layers_lib.max_pool2d(net, [3, 3], scope=end_point, stride=2, padding='SAME')
  tf.summary.image('5_{}'.format(end_point), net[:, :, :, 0:3], max_outputs=4)

  # 28 x 28 x 192
  # Inception module.
  end_point = 'Mixed_3b'
  with variable_scope.variable_scope(end_point):
    with variable_scope.variable_scope('Branch_0'):
      branch_0 = layers.conv2d(net, 64, [1, 1], activation_fn=None, scope='Conv2d_0a_1x1')
      branch_0 = tf.layers.batch_normalization(branch_0, training=training, name='{}_bn'.format('Conv2d_0a_1x1'))
      branch_0 = tf.nn.relu(branch_0, name='{}_act'.format('Conv2d_0a_1x1'))
    with variable_scope.variable_scope('Branch_1'):
      branch_1 = layers.conv2d(net, 64, [1, 1], weights_initializer=trunc_normal(0.09), activation_fn=None, scope='Conv2d_0a_1x1')
      branch_1 = tf.layers.batch_normalization(branch_1, training=training, name='{}_bn'.format('Conv2d_0a_1x1'))
      branch_1 = tf.nn.relu(branch_1, name='{}_act'.format('Conv2d_0a_1x1'))

      branch_1 = layers.conv2d(branch_1, 64, [3, 3], activation_fn=None, scope='Conv2d_0b_3x3')
      branch_1 = tf.layers.batch_normalization(branch_1, training=training, name='{}_bn'.format('Conv2d_0b_3x3'))
      branch_1 = tf.nn.relu(branch_1, name='{}_act'.format('Conv2d_0b_3x3'))
    with variable_scope.variable_scope('Branch_2'):
      branch_2 = layers.conv2d(net, 64, [1, 1], weights_initializer=trunc_normal(0.09), activation_fn=None, scope='Conv2d_0a_1x1')
      branch_2 = tf.layers.batch_normalization(branch_2, training=training, name='{}_bn'.format('Conv2d_0a_1x1'))
      branch_2 = tf.nn.relu(branch_2, name='{}_act'.format('Conv2d_0a_1x1'))

      branch_2 = layers.conv2d(branch_2, 96, [3, 3], activation_fn=None, scope='Conv2d_0b_3x3')
      branch_2 = tf.layers.batch_normalization(branch_2, training=training, name='{}_bn'.format('Conv2d_0b_3x3'))
      branch_2 = tf.nn.relu(branch_2, name='{}_act'.format('Conv2d_0b_3x3'))

      branch_2 = layers.conv2d(branch_2, 96, [3, 3], activation_fn=None, scope='Conv2d_0c_3x3')
      branch_2 = tf.layers.batch_normalization(branch_2, training=training, name='{}_bn'.format('Conv2d_0c_3x3'))
      branch_2 = tf.nn.relu(branch_2, name='{}_act'.format('Conv2d_0c_3x3'))
    with variable_scope.variable_scope('Branch_3'):
      branch_3 = layers_lib.avg_pool2d(net, [3, 3], padding='SAME', stride=1, scope='AvgPool_0a_3x3')
      branch_3 = layers.conv2d(branch_3, 32, [1, 1], weights_initializer=trunc_normal(0.1), activation_fn=None, scope='Conv2d_0b_1x1')
      branch_3 = tf.layers.batch_normalization(branch_3, training=training, name='{}_bn'.format('Conv2d_0b_1x1'))
      branch_3 = tf.nn.relu(branch_3, name='{}_act'.format('Conv2d_0b_1x1'))
    net = array_ops.concat([branch_0, branch_1, branch_2, branch_3], 3)

    # 28 x 28 x 256
    end_point = 'Mixed_3c'
    with variable_scope.variable_scope(end_point):
      with variable_scope.variable_scope('Branch_0'):
        branch_0 = layers.conv2d(net, 64, [1, 1], activation_fn=None, scope='Conv2d_0a_1x1')
        branch_0 = tf.layers.batch_normalization(branch_0, training=training, name='{}_bn'.format('Conv2d_0a_1x1'))
        branch_0 = tf.nn.relu(branch_0, name='{}_act'.format('Conv2d_0a_1x1'))
      with variable_scope.variable_scope('Branch_1'):
        branch_1 = layers.conv2d(net, 64, [1, 1], weights_initializer=trunc_normal(0.09), activation_fn=None, scope='Conv2d_0a_1x1')
        branch_1 = tf.layers.batch_normalization(branch_1, training=training, name='{}_bn'.format('Conv2d_0a_1x1'))
        branch_1 = tf.nn.relu(branch_1, name='{}_act'.format('Conv2d_0a_1x1'))

        branch_1 = layers.conv2d(branch_1, 96, [3, 3], activation_fn=None, scope='Conv2d_0b_3x3')
        branch_1 = tf.layers.batch_normalization(branch_1, training=training, name='{}_bn'.format('Conv2d_0b_3x3'))
        branch_1 = tf.nn.relu(branch_1, name='{}_act'.format('Conv2d_0b_3x3'))
      with variable_scope.variable_scope('Branch_2'):
        branch_2 = layers.conv2d(net, 64, [1, 1], weights_initializer=trunc_normal(0.09), activation_fn=None, scope='Conv2d_0a_1x1')
        branch_2 = tf.layers.batch_normalization(branch_2, training=training, name='{}_bn'.format('Conv2d_0a_1x1'))
        branch_2 = tf.nn.relu(branch_2, name='{}_act'.format('Conv2d_0a_1x1'))

        branch_2 = layers.conv2d(branch_2, 96, [3, 3], activation_fn=None, scope='Conv2d_0b_3x3')
        branch_2 = tf.layers.batch_normalization(branch_2, training=training, name='{}_bn'.format('Conv2d_0b_3x3'))
        branch_2 = tf.nn.relu(branch_2, name='{}_act'.format('Conv2d_0b_3x3'))

        branch_2 = layers.conv2d(branch_2, 96, [3, 3], activation_fn=None, scope='Conv2d_0c_3x3')
        branch_2 = tf.layers.batch_normalization(branch_2, training=training, name='{}_bn'.format('Conv2d_0c_3x3'))
        branch_2 = tf.nn.relu(branch_2, name='{}_act'.format('Conv2d_0c_3x3'))
      with variable_scope.variable_scope('Branch_3'):
        branch_3 = layers_lib.avg_pool2d(net, [3, 3], padding='SAME', stride=1, scope='AvgPool_0a_3x3')
        branch_3 = layers.conv2d(branch_3, 64, [1, 1], weights_initializer=trunc_normal(0.1), activation_fn=None, scope='Conv2d_0b_1x1')
        branch_3 = tf.layers.batch_normalization(branch_3, training=training, name='{}_bn'.format('Conv2d_0b_1x1'))
        branch_3 = tf.nn.relu(branch_3, name='{}_act'.format('Conv2d_0b_1x1'))
      net = array_ops.concat([branch_0, branch_1, branch_2, branch_3], 3)

    # 28 x 28 x 320
    end_point = 'Mixed_4a'
    with variable_scope.variable_scope(end_point):
      with variable_scope.variable_scope('Branch_0'):
        branch_0 = layers.conv2d(net, 128, [1, 1], weights_initializer=trunc_normal(0.09), activation_fn=None, scope='Conv2d_0a_1x1')
        branch_0 = tf.layers.batch_normalization(branch_0, training=training, name='{}_bn'.format('Conv2d_0a_1x1'))
        branch_0 = tf.nn.relu(branch_0, name='{}_act'.format('Conv2d_0a_1x1'))

        branch_0 = layers.conv2d(branch_0, 160, [3, 3], stride=2, activation_fn=None, scope='Conv2d_1a_3x3')
        branch_0 = tf.layers.batch_normalization(branch_0, training=training, name='{}_bn'.format('Conv2d_1a_3x3'))
        branch_0 = tf.nn.relu(branch_0, name='{}_act'.format('Conv2d_1a_3x3'))
      with variable_scope.variable_scope('Branch_1'):
        branch_1 = layers.conv2d(net, 64, [1, 1], weights_initializer=trunc_normal(0.09), activation_fn=None, scope='Conv2d_0a_1x1')
        branch_1 = tf.layers.batch_normalization(branch_1, training=training, name='{}_bn'.format('Conv2d_0a_1x1'))
        branch_1 = tf.nn.relu(branch_1, name='{}_act'.format('Conv2d_0a_1x1'))

        branch_1 = layers.conv2d(branch_1, 96, [3, 3], activation_fn=None, scope='Conv2d_0b_3x3')
        branch_1 = tf.layers.batch_normalization(branch_1, training=training, name='{}_bn'.format('Conv2d_0b_3x3'))
        branch_1 = tf.nn.relu(branch_1, name='{}_act'.format('Conv2d_0b_3x3'))

        branch_1 = layers.conv2d(branch_1, 96, [3, 3], stride=2, activation_fn=None, scope='Conv2d_1a_3x3')
        branch_1 = tf.layers.batch_normalization(branch_1, training=training, name='{}_bn'.format('Conv2d_1a_3x3'))
        branch_1 = tf.nn.relu(branch_1, name='{}_act'.format('Conv2d_1a_3x3'))
      with variable_scope.variable_scope('Branch_2'):
        branch_2 = layers_lib.max_pool2d(net, [3, 3], stride=2, padding='SAME', scope='MaxPool_1a_3x3')
      net = array_ops.concat([branch_0, branch_1, branch_2], 3)

    # 14 x 14 x 576
    end_point = 'Mixed_4b'
    with variable_scope.variable_scope(end_point):
      with variable_scope.variable_scope('Branch_0'):
        branch_0 = layers.conv2d(net, 224, [1, 1], activation_fn=None, scope='Conv2d_0a_1x1')
        branch_0 = tf.layers.batch_normalization(branch_0, training=training, name='{}_bn'.format('Conv2d_0a_1x1'))
        branch_0 = tf.nn.relu(branch_0, name='{}_act'.format('Conv2d_0a_1x1'))
      with variable_scope.variable_scope('Branch_1'):
        branch_1 = layers.conv2d(net, 64, [1, 1], weights_initializer=trunc_normal(0.09), activation_fn=None, scope='Conv2d_0a_1x1')
        branch_1 = tf.layers.batch_normalization(branch_1, training=training, name='{}_bn'.format('Conv2d_0a_1x1'))
        branch_1 = tf.nn.relu(branch_1, name='{}_act'.format('Conv2d_0a_1x1'))

        branch_1 = layers.conv2d(branch_1, 96, [3, 3], activation_fn=None, scope='Conv2d_0b_3x3')
        branch_1 = tf.layers.batch_normalization(branch_1, training=training, name='{}_bn'.format('Conv2d_0b_3x3'))
        branch_1 = tf.nn.relu(branch_1, name='{}_act'.format('Conv2d_0b_3x3'))
      with variable_scope.variable_scope('Branch_2'):
        branch_2 = layers.conv2d(net, 96, [1, 1], weights_initializer=trunc_normal(0.09), activation_fn=None, scope='Conv2d_0a_1x1')
        branch_2 = tf.layers.batch_normalization(branch_2, training=training, name='{}_bn'.format('Conv2d_0a_1x1'))
        branch_2 = tf.nn.relu(branch_2, name='{}_act'.format('Conv2d_0a_1x1'))

        branch_2 = layers.conv2d(branch_2, 128, [3, 3], activation_fn=None, scope='Conv2d_0b_3x3')
        branch_2 = tf.layers.batch_normalization(branch_2, training=training, name='{}_bn'.format('Conv2d_0b_3x3'))
        branch_2 = tf.nn.relu(branch_2, name='{}_act'.format('Conv2d_0b_3x3'))

        branch_2 = layers.conv2d(branch_2, 128, [3, 3], activation_fn=None, scope='Conv2d_0c_3x3')
        branch_2 = tf.layers.batch_normalization(branch_2, training=training, name='{}_bn'.format('Conv2d_0c_3x3'))
        branch_2 = tf.nn.relu(branch_2, name='{}_act'.format('Conv2d_0c_3x3'))
      with variable_scope.variable_scope('Branch_3'):
        branch_3 = layers_lib.avg_pool2d(net, [3, 3], padding='SAME', stride=1, scope='AvgPool_0a_3x3')
        branch_3 = layers.conv2d(branch_3, 128, [1, 1], weights_initializer=trunc_normal(0.1), activation_fn=None, scope='Conv2d_0b_1x1')
        branch_3 = tf.layers.batch_normalization(branch_3, training=training, name='{}_bn'.format('Conv2d_0b_1x1'))
        branch_3 = tf.nn.relu(branch_3, name='{}_act'.format('Conv2d_0b_1x1'))
      net = array_ops.concat([branch_0, branch_1, branch_2, branch_3], 3)

    # 14 x 14 x 576
    end_point = 'Mixed_4c'
    with variable_scope.variable_scope(end_point):
      with variable_scope.variable_scope('Branch_0'):
        branch_0 = layers.conv2d(net, 192, [1, 1], activation_fn=None, scope='Conv2d_0a_1x1')
        branch_0 = tf.layers.batch_normalization(branch_0, training=training, name='{}_bn'.format('Conv2d_0a_1x1'))
        branch_0 = tf.nn.relu(branch_0, name='{}_act'.format('Conv2d_0a_1x1'))
      with variable_scope.variable_scope('Branch_1'):
        branch_1 = layers.conv2d(net, 96, [1, 1], weights_initializer=trunc_normal(0.09), activation_fn=None, scope='Conv2d_0a_1x1')
        branch_1 = tf.layers.batch_normalization(branch_1, training=training, name='{}_bn'.format('Conv2d_0a_1x1'))
        branch_1 = tf.nn.relu(branch_1, name='{}_act'.format('Conv2d_0a_1x1'))

        branch_1 = layers.conv2d(branch_1, 128, [3, 3], activation_fn=None, scope='Conv2d_0b_3x3')
        branch_1 = tf.layers.batch_normalization(branch_1, training=training, name='{}_bn'.format('Conv2d_0b_3x3'))
        branch_1 = tf.nn.relu(branch_1, name='{}_act'.format('Conv2d_0b_3x3'))
      with variable_scope.variable_scope('Branch_2'):
        branch_2 = layers.conv2d(net, 96, [1, 1], weights_initializer=trunc_normal(0.09), activation_fn=None, scope='Conv2d_0a_1x1')
        branch_2 = tf.layers.batch_normalization(branch_2, training=training, name='{}_bn'.format('Conv2d_0a_1x1'))
        branch_2 = tf.nn.relu(branch_2, name='{}_act'.format('Conv2d_0a_1x1'))

        branch_2 = layers.conv2d(branch_2, 128, [3, 3], activation_fn=None, scope='Conv2d_0b_3x3')
        branch_2 = tf.layers.batch_normalization(branch_2, training=training, name='{}_bn'.format('Conv2d_0b_3x3'))
        branch_2 = tf.nn.relu(branch_2, name='{}_act'.format('Conv2d_0b_3x3'))

        branch_2 = layers.conv2d(branch_2, 128, [3, 3], activation_fn=None, scope='Conv2d_0c_3x3')
        branch_2 = tf.layers.batch_normalization(branch_2, training=training, name='{}_bn'.format('Conv2d_0c_3x3'))
        branch_2 = tf.nn.relu(branch_2, name='{}_act'.format('Conv2d_0c_3x3'))
      with variable_scope.variable_scope('Branch_3'):
        branch_3 = layers_lib.avg_pool2d(net, [3, 3], padding='SAME', stride=1, scope='AvgPool_0a_3x3')
        branch_3 = layers.conv2d(branch_3, 128, [1, 1], weights_initializer=trunc_normal(0.1), activation_fn=None, scope='Conv2d_0b_1x1')
        branch_3 = tf.layers.batch_normalization(branch_3, training=training, name='{}_bn'.format('Conv2d_0b_1x1'))
        branch_3 = tf.nn.relu(branch_3, name='{}_act'.format('Conv2d_0b_1x1'))
      net = array_ops.concat([branch_0, branch_1, branch_2, branch_3], 3)

    # 14 x 14 x 576
    end_point = 'Mixed_4d'
    with variable_scope.variable_scope(end_point):
      with variable_scope.variable_scope('Branch_0'):
        branch_0 = layers.conv2d(net, 160, [1, 1], activation_fn=None, scope='Conv2d_0a_1x1')
        branch_0 = tf.layers.batch_normalization(branch_0, training=training, name='{}_bn'.format('Conv2d_0a_1x1'))
        branch_0 = tf.nn.relu(branch_0, name='{}_act'.format('Conv2d_0a_1x1'))
      with variable_scope.variable_scope('Branch_1'):
        branch_1 = layers.conv2d(net, 128, [1, 1], weights_initializer=trunc_normal(0.09), activation_fn=None, scope='Conv2d_0a_1x1')
        branch_1 = tf.layers.batch_normalization(branch_1, training=training, name='{}_bn'.format('Conv2d_0a_1x1'))
        branch_1 = tf.nn.relu(branch_1, name='{}_act'.format('Conv2d_0a_1x1'))

        branch_1 = layers.conv2d(branch_1, 160, [3, 3], activation_fn=None, scope='Conv2d_0b_3x3')
        branch_1 = tf.layers.batch_normalization(branch_1, training=training, name='{}_bn'.format('Conv2d_0b_3x3'))
        branch_1 = tf.nn.relu(branch_1, name='{}_act'.format('Conv2d_0b_3x3'))
      with variable_scope.variable_scope('Branch_2'):
        branch_2 = layers.conv2d(net, 128, [1, 1], weights_initializer=trunc_normal(0.09), activation_fn=None, scope='Conv2d_0a_1x1')
        branch_2 = tf.layers.batch_normalization(branch_2, training=training, name='{}_bn'.format('Conv2d_0a_1x1'))
        branch_2 = tf.nn.relu(branch_2, name='{}_act'.format('Conv2d_0a_1x1'))

        branch_2 = layers.conv2d(branch_2, 160, [3, 3], activation_fn=None, scope='Conv2d_0b_3x3')
        branch_2 = tf.layers.batch_normalization(branch_2, training=training, name='{}_bn'.format('Conv2d_0b_3x3'))
        branch_2 = tf.nn.relu(branch_2, name='{}_act'.format('Conv2d_0b_3x3'))

        branch_2 = layers.conv2d(branch_2, 160, [3, 3], activation_fn=None, scope='Conv2d_0c_3x3')
        branch_2 = tf.layers.batch_normalization(branch_2, training=training, name='{}_bn'.format('Conv2d_0c_3x3'))
        branch_2 = tf.nn.relu(branch_2, name='{}_act'.format('Conv2d_0c_3x3'))
      with variable_scope.variable_scope('Branch_3'):
        branch_3 = layers_lib.avg_pool2d(net, [3, 3], padding='SAME', stride=1, scope='AvgPool_0a_3x3')
        branch_3 = layers.conv2d(branch_3, 96, [1, 1], weights_initializer=trunc_normal(0.1), activation_fn=None, scope='Conv2d_0b_1x1')
        branch_3 = tf.layers.batch_normalization(branch_3, training=training, name='{}_bn'.format('Conv2d_0b_1x1'))
        branch_3 = tf.nn.relu(branch_3, name='{}_act'.format('Conv2d_0b_1x1'))
      net = array_ops.concat([branch_0, branch_1, branch_2, branch_3], 3)

    # 14 x 14 x 576
    end_point = 'Mixed_4e'
    with variable_scope.variable_scope(end_point):
      with variable_scope.variable_scope('Branch_0'):
        branch_0 = layers.conv2d(net, 96, [1, 1], activation_fn=None, scope='Conv2d_0a_1x1')
        branch_0 = tf.layers.batch_normalization(branch_0, training=training, name='{}_bn'.format('Conv2d_0a_1x1'))
        branch_0 = tf.nn.relu(branch_0, name='{}_act'.format('Conv2d_0a_1x1'))
      with variable_scope.variable_scope('Branch_1'):
        branch_1 = layers.conv2d(net, 128, [1, 1], weights_initializer=trunc_normal(0.09), activation_fn=None, scope='Conv2d_0a_1x1')
        branch_1 = tf.layers.batch_normalization(branch_1, training=training, name='{}_bn'.format('Conv2d_0a_1x1'))
        branch_1 = tf.nn.relu(branch_1, name='{}_act'.format('Conv2d_0a_1x1'))

        branch_1 = layers.conv2d(branch_1, 192, [3, 3], activation_fn=None, scope='Conv2d_0b_3x3')
        branch_1 = tf.layers.batch_normalization(branch_1, training=training, name='{}_bn'.format('Conv2d_0b_3x3'))
        branch_1 = tf.nn.relu(branch_1, name='{}_act'.format('Conv2d_0b_3x3'))
      with variable_scope.variable_scope('Branch_2'):
        branch_2 = layers.conv2d(net, 160, [1, 1], weights_initializer=trunc_normal(0.09), activation_fn=None, scope='Conv2d_0a_1x1')
        branch_2 = tf.layers.batch_normalization(branch_2, training=training, name='{}_bn'.format('Conv2d_0a_1x1'))
        branch_2 = tf.nn.relu(branch_2, name='{}_act'.format('Conv2d_0a_1x1'))

        branch_2 = layers.conv2d(branch_2, 192, [3, 3], activation_fn=None, scope='Conv2d_0b_3x3')
        branch_2 = tf.layers.batch_normalization(branch_2, training=training, name='{}_bn'.format('Conv2d_0b_3x3'))
        branch_2 = tf.nn.relu(branch_2, name='{}_act'.format('Conv2d_0b_3x3'))

        branch_2 = layers.conv2d(branch_2, 192, [3, 3], activation_fn=None, scope='Conv2d_0c_3x3')
        branch_2 = tf.layers.batch_normalization(branch_2, training=training, name='{}_bn'.format('Conv2d_0c_3x3'))
        branch_2 = tf.nn.relu(branch_2, name='{}_act'.format('Conv2d_0c_3x3'))
      with variable_scope.variable_scope('Branch_3'):
        branch_3 = layers_lib.avg_pool2d(net, [3, 3], padding='SAME', stride=1, scope='AvgPool_0a_3x3')
        branch_3 = layers.conv2d(branch_3, 96, [1, 1], weights_initializer=trunc_normal(0.1), activation_fn=None, scope='Conv2d_0b_1x1')
        branch_3 = tf.layers.batch_normalization(branch_3, training=training, name='{}_bn'.format('Conv2d_0b_1x1'))
        branch_3 = tf.nn.relu(branch_3, name='{}_act'.format('Conv2d_0b_1x1'))
      net = array_ops.concat([branch_0, branch_1, branch_2, branch_3], 3)

    # 14 x 14 x 576
    end_point = 'Mixed_5a'
    with variable_scope.variable_scope(end_point):
      with variable_scope.variable_scope('Branch_0'):
        branch_0 = layers.conv2d(net, 128, [1, 1], weights_initializer=trunc_normal(0.09), activation_fn=None, scope='Conv2d_0a_1x1')
        branch_0 = tf.layers.batch_normalization(branch_0, training=training, name='{}_bn'.format('Conv2d_0a_1x1'))
        branch_0 = tf.nn.relu(branch_0, name='{}_act'.format('Conv2d_0a_1x1'))

        branch_0 = layers.conv2d(branch_0, 192, [3, 3], stride=2, activation_fn=None, scope='Conv2d_1a_3x3')
        branch_0 = tf.layers.batch_normalization(branch_0, training=training, name='{}_bn'.format('Conv2d_1a_3x3'))
        branch_0 = tf.nn.relu(branch_0, name='{}_act'.format('Conv2d_1a_3x3'))
      with variable_scope.variable_scope('Branch_1'):
        branch_1 = layers.conv2d(net, 192, [1, 1], weights_initializer=trunc_normal(0.09), activation_fn=None, scope='Conv2d_0a_1x1')
        branch_1 = tf.layers.batch_normalization(branch_1, training=training, name='{}_bn'.format('Conv2d_0a_1x1'))
        branch_1 = tf.nn.relu(branch_1, name='{}_act'.format('Conv2d_0a_1x1'))

        branch_1 = layers.conv2d(branch_1, 256, [3, 3], activation_fn=None, scope='Conv2d_0b_3x3')
        branch_1 = tf.layers.batch_normalization(branch_1, training=training, name='{}_bn'.format('Conv2d_0b_3x3'))
        branch_1 = tf.nn.relu(branch_1, name='{}_act'.format('Conv2d_0b_3x3'))

        branch_1 = layers.conv2d(branch_1, 256, [3, 3], stride=2, activation_fn=None, scope='Conv2d_1a_3x3')
        branch_1 = tf.layers.batch_normalization(branch_1, training=training, name='{}_bn'.format('Conv2d_1a_3x3'))
        branch_1 = tf.nn.relu(branch_1, name='{}_act'.format('Conv2d_1a_3x3'))
      with variable_scope.variable_scope('Branch_2'):
        branch_2 = layers_lib.max_pool2d(net, [3, 3], stride=2, padding='SAME', scope='MaxPool_1a_3x3')
      net = array_ops.concat([branch_0, branch_1, branch_2], 3)

    # 7 x 7 x 1024
    end_point = 'Mixed_5b'
    with variable_scope.variable_scope(end_point):
      with variable_scope.variable_scope('Branch_0'):
        branch_0 = layers.conv2d(net, 352, [1, 1], activation_fn=None, scope='Conv2d_0a_1x1')
        branch_0 = tf.layers.batch_normalization(branch_0, training=training, name='{}_bn'.format('Conv2d_0a_1x1'))
        branch_0 = tf.nn.relu(branch_0, name='{}_act'.format('Conv2d_0a_1x1'))
      with variable_scope.variable_scope('Branch_1'):
        branch_1 = layers.conv2d(net, 192, [1, 1], weights_initializer=trunc_normal(0.09), activation_fn=None, scope='Conv2d_0a_1x1')
        branch_1 = tf.layers.batch_normalization(branch_1, training=training, name='{}_bn'.format('Conv2d_0a_1x1'))
        branch_1 = tf.nn.relu(branch_1, name='{}_act'.format('Conv2d_0a_1x1'))

        branch_1 = layers.conv2d(branch_1, 320, [3, 3], activation_fn=None, scope='Conv2d_0b_3x3')
        branch_1 = tf.layers.batch_normalization(branch_1, training=training, name='{}_bn'.format('Conv2d_0b_3x3'))
        branch_1 = tf.nn.relu(branch_1, name='{}_act'.format('Conv2d_0b_3x3'))
      with variable_scope.variable_scope('Branch_2'):
        branch_2 = layers.conv2d(net, 160, [1, 1], weights_initializer=trunc_normal(0.09), activation_fn=None, scope='Conv2d_0a_1x1')
        branch_2 = tf.layers.batch_normalization(branch_2, training=training, name='{}_bn'.format('Conv2d_0a_1x1'))
        branch_2 = tf.nn.relu(branch_2, name='{}_act'.format('Conv2d_0a_1x1'))

        branch_2 = layers.conv2d(branch_2, 224, [3, 3], activation_fn=None, scope='Conv2d_0b_3x3')
        branch_2 = tf.layers.batch_normalization(branch_2, training=training, name='{}_bn'.format('Conv2d_0b_3x3'))
        branch_2 = tf.nn.relu(branch_2, name='{}_act'.format('Conv2d_0b_3x3'))

        branch_2 = layers.conv2d(branch_2, 224, [3, 3], activation_fn=None, scope='Conv2d_0c_3x3')
        branch_2 = tf.layers.batch_normalization(branch_2, training=training, name='{}_bn'.format('Conv2d_0c_3x3'))
        branch_2 = tf.nn.relu(branch_2, name='{}_act'.format('Conv2d_0c_3x3'))
      with variable_scope.variable_scope('Branch_3'):
        branch_3 = layers_lib.avg_pool2d(net, [3, 3], padding='SAME', stride=1, scope='AvgPool_0a_3x3')
        branch_3 = layers.conv2d(branch_3, 128, [1, 1], weights_initializer=trunc_normal(0.1), activation_fn=None, scope='Conv2d_0b_1x1')
        branch_3 = tf.layers.batch_normalization(branch_3, training=training, name='{}_bn'.format('Conv2d_0b_1x1'))
        branch_3 = tf.nn.relu(branch_3, name='{}_act'.format('Conv2d_0b_1x1'))
      net = array_ops.concat([branch_0, branch_1, branch_2, branch_3], 3)

    # 7 x 7 x 1024
    end_point = 'Mixed_5c'
    with variable_scope.variable_scope(end_point):
      with variable_scope.variable_scope('Branch_0'):
        branch_0 = layers.conv2d(net, 352, [1, 1], activation_fn=None, scope='Conv2d_0a_1x1')
        branch_0 = tf.layers.batch_normalization(branch_0, training=training, name='{}_bn'.format('Conv2d_0a_1x1'))
        branch_0 = tf.nn.relu(branch_0, name='{}_act'.format('Conv2d_0a_1x1'))
      with variable_scope.variable_scope('Branch_1'):
        branch_1 = layers.conv2d(net, 192, [1, 1], weights_initializer=trunc_normal(0.09), activation_fn=None, scope='Conv2d_0a_1x1')
        branch_1 = tf.layers.batch_normalization(branch_1, training=training, name='{}_bn'.format('Conv2d_0a_1x1'))
        branch_1 = tf.nn.relu(branch_1, name='{}_act'.format('Conv2d_0a_1x1'))

        branch_1 = layers.conv2d(branch_1, 320, [3, 3], activation_fn=None, scope='Conv2d_0b_3x3')
        branch_1 = tf.layers.batch_normalization(branch_1, training=training, name='{}_bn'.format('Conv2d_0b_3x3'))
        branch_1 = tf.nn.relu(branch_1, name='{}_act'.format('Conv2d_0b_3x3'))
      with variable_scope.variable_scope('Branch_2'):
        branch_2 = layers.conv2d(net, 192, [1, 1], weights_initializer=trunc_normal(0.09), activation_fn=None, scope='Conv2d_0a_1x1')
        branch_2 = tf.layers.batch_normalization(branch_2, training=training, name='{}_bn'.format('Conv2d_0a_1x1'))
        branch_2 = tf.nn.relu(branch_2, name='{}_act'.format('Conv2d_0a_1x1'))

        branch_2 = layers.conv2d(branch_2, 224, [3, 3], activation_fn=None, scope='Conv2d_0b_3x3')
        branch_2 = tf.layers.batch_normalization(branch_2, training=training, name='{}_bn'.format('Conv2d_0b_3x3'))
        branch_2 = tf.nn.relu(branch_2, name='{}_act'.format('Conv2d_0b_3x3'))

        branch_2 = layers.conv2d(branch_2, 224, [3, 3], activation_fn=None, scope='Conv2d_0c_3x3')
        branch_2 = tf.layers.batch_normalization(branch_2, training=training, name='{}_bn'.format('Conv2d_0c_3x3'))
        branch_2 = tf.nn.relu(branch_2, name='{}_act'.format('Conv2d_0c_3x3'))
      with variable_scope.variable_scope('Branch_3'):
        branch_3 = layers_lib.max_pool2d(net, [3, 3], padding='SAME', stride=1, scope='MaxPool_0a_3x3')
        branch_3 = layers.conv2d(branch_3, 128, [1, 1], weights_initializer=trunc_normal(0.1), activation_fn=None, scope='Conv2d_0b_1x1')
        branch_3 = tf.layers.batch_normalization(branch_3, training=training, name='{}_bn'.format('Conv2d_0b_1x1'))
        branch_3 = tf.nn.relu(branch_3, name='{}_act'.format('Conv2d_0b_1x1'))
      net = array_ops.concat([branch_0, branch_1, branch_2, branch_3], 3)

  with variable_scope.variable_scope('Logits'):
    kernel_size = util._reduced_kernel_size_for_small_input(net, [7, 7])
    net = layers_lib.avg_pool2d(net, kernel_size, stride=1, padding='VALID', scope='AvgPool_1a_{}x{}'.format(*kernel_size))

    # 1 x 1 x 1024
    net = layers_lib.dropout(net, keep_prob=params['dropout_keep_prob'], scope='Dropout_1b')
    logits = layers.conv2d(net, params['num_classes'], [1, 1], normalizer_fn=None, activation_fn=None, scope='Conv2d_1c_1x1')
    if params['spatial_squeeze']:
      logits = array_ops.squeeze(logits, [1, 2], name='SpatialSqueeze')

  predictions = {
    'argmax': tf.argmax(logits, axis=1, name='prediction_classes'),
    'predictions': layers_lib.softmax(logits, scope='Predictions'),
  }

  if mode == tf.estimator.ModeKeys.PREDICT:
    return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)

  loss = tf.losses.sparse_softmax_cross_entropy(logits=logits, labels=labels)
  tf.summary.scalar('loss', loss)

  eval_metric_ops = {
    'accuracy_val': tf.metrics.accuracy(labels=labels, predictions=predictions['argmax'])
  }

  if mode == tf.estimator.ModeKeys.EVAL:
    return tf.estimator.EstimatorSpec(mode=mode, loss=loss, eval_metric_ops=eval_metric_ops)

  optimizer = tf.train.GradientDescentOptimizer(learning_rate=params['learning_rate'])
  extra_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
  with tf.control_dependencies(extra_update_ops):
    train_op = optimizer.minimize(loss=loss, global_step=tf.train.get_global_step())

  tf.summary.scalar('accuracy_train', eval_metric_ops['accuracy_val'][1])
  tf.summary.histogram('labels', labels)
  tf.summary.histogram('predictions', predictions['argmax'])

  return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)
Exemple #7
0
def Unet(x,
         labels,
         keep_prob=1.0,
         channels=3,
         n_class=2,
         num_layers=5,
         features_root=64,
         filter_size=3,
         pool_size=2,
         summaries=True,
         trainable=True,
         reuse=False,
         scope='dis'):
    with tf.variable_scope(scope, reuse=reuse):
        print(scope)

        end_points = {}
        logging.info(
            "Layers {layers}, features {features}, filter size {filter_size}x{filter_size}, pool size: {pool_size}x{pool_size}"
            .format(layers=layers,
                    features=features_root,
                    filter_size=filter_size,
                    pool_size=pool_size))

        # Placeholder for the input image
        with tf.name_scope("preprocessing"):
            batch_size = tf.shape(x)[0]
            nx = tf.shape(x)[1]
            ny = tf.shape(x)[2]
            in_node = x

        in_size = 1000
        size = in_size
        # down layers
        logits = conv(in_node,
                      16,
                      kernel=3,
                      stride=1,
                      pad=0,
                      pad_type='zero',
                      scope='conv_11')
        logits = tf_contrib.layers.batch_norm(logits,
                                              decay=0.9,
                                              epsilon=1e-05,
                                              center=True,
                                              scale=True,
                                              is_training=trainable)
        logits = tf.nn.relu(logits)
        logits = conv(logits,
                      32,
                      kernel=3,
                      stride=1,
                      pad=0,
                      pad_type='zero',
                      scope='conv_12')
        logits = tf_contrib.layers.batch_norm(logits,
                                              decay=0.9,
                                              epsilon=1e-05,
                                              center=True,
                                              scale=True,
                                              is_training=trainable)
        logits = tf.nn.relu(logits)
        logits = max_pool(logits, pool_size)

        logits = conv(logits,
                      64,
                      kernel=3,
                      stride=1,
                      pad=0,
                      pad_type='zero',
                      scope='conv_21')
        logits = tf_contrib.layers.batch_norm(logits,
                                              decay=0.9,
                                              epsilon=1e-05,
                                              center=True,
                                              scale=True,
                                              is_training=trainable)
        logits = tf.nn.relu(logits)
        logits = conv(logits,
                      64,
                      kernel=3,
                      stride=1,
                      pad=0,
                      pad_type='zero',
                      scope='conv_22')
        logits = tf_contrib.layers.batch_norm(logits,
                                              decay=0.9,
                                              epsilon=1e-05,
                                              center=True,
                                              scale=True,
                                              is_training=trainable)
        logits = tf.nn.relu(logits)
        logits = max_pool(logits, pool_size)

        logits = conv(logits,
                      128,
                      kernel=3,
                      stride=1,
                      pad=0,
                      pad_type='zero',
                      scope='conv_31')
        logits = tf_contrib.layers.batch_norm(logits,
                                              decay=0.9,
                                              epsilon=1e-05,
                                              center=True,
                                              scale=True,
                                              is_training=trainable)
        logits = tf.nn.relu(logits)
        logits = conv(logits,
                      128,
                      kernel=3,
                      stride=1,
                      pad=0,
                      pad_type='zero',
                      scope='conv_32')
        logits = tf_contrib.layers.batch_norm(logits,
                                              decay=0.9,
                                              epsilon=1e-05,
                                              center=True,
                                              scale=True,
                                              is_training=trainable)
        logits = tf.nn.relu(logits)
        logits = max_pool(logits, pool_size)

        logits = conv(logits,
                      256,
                      kernel=3,
                      stride=1,
                      pad=0,
                      pad_type='zero',
                      scope='conv_41')
        logits = tf_contrib.layers.batch_norm(logits,
                                              decay=0.9,
                                              epsilon=1e-05,
                                              center=True,
                                              scale=True,
                                              is_training=trainable)
        logits = tf.nn.relu(logits)
        logits = conv(logits,
                      256,
                      kernel=3,
                      stride=1,
                      pad=0,
                      pad_type='zero',
                      scope='conv_42')
        logits = tf_contrib.layers.batch_norm(logits,
                                              decay=0.9,
                                              epsilon=1e-05,
                                              center=True,
                                              scale=True,
                                              is_training=trainable)
        logits = tf.nn.relu(logits)
        logits = max_pool(logits, pool_size)

        logits = conv(logits,
                      512,
                      kernel=3,
                      stride=1,
                      pad=0,
                      pad_type='zero',
                      scope='conv_51')
        logits = tf_contrib.layers.batch_norm(logits,
                                              decay=0.9,
                                              epsilon=1e-05,
                                              center=True,
                                              scale=True,
                                              is_training=trainable)
        logits = tf.nn.relu(logits)

        logits = conv(logits,
                      256,
                      kernel=3,
                      stride=1,
                      pad=0,
                      pad_type='zero',
                      scope='deconv_1')
        logits = tf_contrib.layers.batch_norm(logits,
                                              decay=0.9,
                                              epsilon=1e-05,
                                              center=True,
                                              scale=True,
                                              is_training=trainable)
        logits = tf.nn.relu(logits)
        logits = up_sample_bilinear(logits, scale_factor=2)

        logits = conv(logits,
                      256,
                      kernel=3,
                      stride=1,
                      pad=0,
                      pad_type='zero',
                      scope='deconv_21')
        logits = tf_contrib.layers.batch_norm(logits,
                                              decay=0.9,
                                              epsilon=1e-05,
                                              center=True,
                                              scale=True,
                                              is_training=trainable)
        logits = tf.nn.relu(logits)
        logits = conv(logits,
                      128,
                      kernel=3,
                      stride=1,
                      pad=0,
                      pad_type='zero',
                      scope='deconv_22')
        logits = tf_contrib.layers.batch_norm(logits,
                                              decay=0.9,
                                              epsilon=1e-05,
                                              center=True,
                                              scale=True,
                                              is_training=trainable)
        logits = tf.nn.relu(logits)
        logits = up_sample_bilinear(logits, scale_factor=2)

        logits = conv(logits,
                      128,
                      kernel=4,
                      stride=1,
                      pad=0,
                      pad_type='zero',
                      scope='deconv_31')
        logits = tf_contrib.layers.batch_norm(logits,
                                              decay=0.9,
                                              epsilon=1e-05,
                                              center=True,
                                              scale=True,
                                              is_training=trainable)
        logits = tf.nn.relu(logits)
        logits = conv(logits,
                      128,
                      kernel=3,
                      stride=1,
                      pad=0,
                      pad_type='zero',
                      scope='deconv_32')
        logits = tf_contrib.layers.batch_norm(logits,
                                              decay=0.9,
                                              epsilon=1e-05,
                                              center=True,
                                              scale=True,
                                              is_training=trainable)
        logits = tf.nn.relu(logits)
        logits = up_sample_bilinear(logits, scale_factor=2)

        logits = conv(logits,
                      64,
                      kernel=3,
                      stride=1,
                      pad=0,
                      pad_type='zero',
                      scope='deconv_41')
        logits = tf_contrib.layers.batch_norm(logits,
                                              decay=0.9,
                                              epsilon=1e-05,
                                              center=True,
                                              scale=True,
                                              is_training=trainable)
        logits = tf.nn.relu(logits)
        logits = conv(logits,
                      32,
                      kernel=3,
                      stride=1,
                      pad=0,
                      pad_type='zero',
                      scope='deconv_42')
        logits = tf_contrib.layers.batch_norm(logits,
                                              decay=0.9,
                                              epsilon=1e-05,
                                              center=True,
                                              scale=True,
                                              is_training=trainable)
        logits = tf.nn.relu(logits)
        logits = up_sample_bilinear(logits, scale_factor=2)

        logits = conv(logits,
                      16,
                      kernel=3,
                      stride=1,
                      pad=0,
                      pad_type='zero',
                      scope='deconv_51')
        logits = tf_contrib.layers.batch_norm(logits,
                                              decay=0.9,
                                              epsilon=1e-05,
                                              center=True,
                                              scale=True,
                                              is_training=trainable)
        logits = tf.nn.relu(logits)
        output_map = conv(logits,
                          1,
                          kernel=3,
                          stride=1,
                          pad=0,
                          pad_type='zero',
                          scope='output')

        end_points['Logits'] = output_map
        end_points['Predictions'] = layers.softmax(output_map,
                                                   scope='predictions')
        end_points['offset'] = layers.softmax(output_map, scope='predictions')

        return output_map, end_points
Exemple #8
0
def resnet_v2(inputs,
              blocks,
              num_classes=None,
              is_training=None,
              global_pool=True,
              output_stride=None,
              include_root_block=True,
              reuse=None,
              scope=None):
  """Generator for v2 (preactivation) ResNet models.

  This function generates a family of ResNet v2 models. See the resnet_v2_*()
  methods for specific model instantiations, obtained by selecting different
  block instantiations that produce ResNets of various depths.

  Training for image classification on Imagenet is usually done with [224, 224]
  inputs, resulting in [7, 7] feature maps at the output of the last ResNet
  block for the ResNets defined in [1] that have nominal stride equal to 32.
  However, for dense prediction tasks we advise that one uses inputs with
  spatial dimensions that are multiples of 32 plus 1, e.g., [321, 321]. In
  this case the feature maps at the ResNet output will have spatial shape
  [(height - 1) / output_stride + 1, (width - 1) / output_stride + 1]
  and corners exactly aligned with the input image corners, which greatly
  facilitates alignment of the features to the image. Using as input [225, 225]
  images results in [8, 8] feature maps at the output of the last ResNet block.

  For dense prediction tasks, the ResNet needs to run in fully-convolutional
  (FCN) mode and global_pool needs to be set to False. The ResNets in [1, 2] all
  have nominal stride equal to 32 and a good choice in FCN mode is to use
  output_stride=16 in order to increase the density of the computed features at
  small computational and memory overhead, cf. http://arxiv.org/abs/1606.00915.

  Args:
    inputs: A tensor of size [batch, height_in, width_in, channels].
    blocks: A list of length equal to the number of ResNet blocks. Each element
      is a resnet_utils.Block object describing the units in the block.
    num_classes: Number of predicted classes for classification tasks. If None
      we return the features before the logit layer.
    is_training: whether is training or not. If None, the value inherited from
      the resnet_arg_scope is used. Specifying value None is deprecated.
    global_pool: If True, we perform global average pooling before computing the
      logits. Set to True for image classification, False for dense prediction.
    output_stride: If None, then the output will be computed at the nominal
      network stride. If output_stride is not None, it specifies the requested
      ratio of input to output spatial resolution.
    include_root_block: If True, include the initial convolution followed by
      max-pooling, if False excludes it. If excluded, `inputs` should be the
      results of an activation-less convolution.
    reuse: whether or not the network and its variables should be reused. To be
      able to reuse 'scope' must be given.
    scope: Optional variable_scope.


  Returns:
    net: A rank-4 tensor of size [batch, height_out, width_out, channels_out].
      If global_pool is False, then height_out and width_out are reduced by a
      factor of output_stride compared to the respective height_in and width_in,
      else both height_out and width_out equal one. If num_classes is None, then
      net is the output of the last ResNet block, potentially after global
      average pooling. If num_classes is not None, net contains the pre-softmax
      activations.
    end_points: A dictionary from components of the network to the corresponding
      activation.

  Raises:
    ValueError: If the target output_stride is not valid.
  """
  with variable_scope.variable_scope(
      scope, 'resnet_v2', [inputs], reuse=reuse) as sc:
    end_points_collection = sc.original_name_scope + '_end_points'
    with arg_scope(
        [layers_lib.conv2d, bottleneck, resnet_utils.stack_blocks_dense],
        outputs_collections=end_points_collection):
      if is_training is not None:
        bn_scope = arg_scope([layers.batch_norm], is_training=is_training)
      else:
        bn_scope = arg_scope([])
      with bn_scope:
        net = inputs
        if include_root_block:
          if output_stride is not None:
            if output_stride % 4 != 0:
              raise ValueError('The output_stride needs to be a multiple of 4.')
            output_stride /= 4
          # We do not include batch normalization or activation functions in
          # conv1 because the first ResNet unit will perform these. Cf.
          # Appendix of [2].
          with arg_scope(
              [layers_lib.conv2d], activation_fn=None, normalizer_fn=None):
            net = resnet_utils.conv2d_same(net, 64, 7, stride=2, scope='conv1')
          net = layers.max_pool2d(net, [3, 3], stride=2, scope='pool1')
        net = resnet_utils.stack_blocks_dense(net, blocks, output_stride)
        # This is needed because the pre-activation variant does not have batch
        # normalization or activation functions in the residual unit output. See
        # Appendix of [2].
        net = layers.batch_norm(
            net, activation_fn=nn_ops.relu, scope='postnorm')
        if global_pool:
          # Global average pooling.
          net = math_ops.reduce_mean(net, [1, 2], name='pool5', keep_dims=True)
        if num_classes is not None:
          net = layers_lib.conv2d(
              net,
              num_classes, [1, 1],
              activation_fn=None,
              normalizer_fn=None,
              scope='logits')
        # Convert end_points_collection into a dictionary of end_points.
        end_points = utils.convert_collection_to_dict(end_points_collection)
        if num_classes is not None:
          end_points['predictions'] = layers.softmax(net, scope='predictions')
        return net, end_points
def _tower_loss(network_fn,
                images,
                labels,
                is_cross=True,
                reuse=False,
                is_training=False):
    """Calculate the total loss on a single tower running the reid model."""
    scale = 64.
    scale_pred = 4.
    margin = 0.5
    net_features, net_logits, net_endpoints, net_raw_loss, net_pred, net_features, c_update_op = {}, {}, {}, {}, {}, {}, {}
    weight_loss, net_regularization, net_pred, net_predict = {}, {}, {}, {}
    for i in range(FLAGS.num_networks):
        net_features["{0}".format(i)], net_endpoints["{0}".format(i)] = \
            network_fn["{0}".format(i)](images, reuse=reuse, is_training=is_training, scope=('dmlnet_%d' % i))

        if is_cross:
            net_predict["{0}".format(i)], net_logits["{0}".format(
                i)], net_regularization["{0}".format(i)], weight, c_update_op[
                    "{0}".format(i)] = DA_loss(net_features["{0}".format(i)],
                                               tf.argmax(labels, axis=1),
                                               FLAGS.num_classes,
                                               s=scale,
                                               m=margin,
                                               scope=('dmlnet_%d' % i),
                                               is_cross=is_cross,
                                               reuse=reuse)

            net_raw_loss["{0}".format(i)] = tf.losses.softmax_cross_entropy(
                logits=net_logits["{0}".format(i)],
                onehot_labels=labels,
                label_smoothing=FLAGS.label_smoothing,
                weights=1.0) + tf.reduce_mean(weight)
            kl_weight = 1.0

        else:
            print('semi_data!')
            net_predict["{0}".format(i)], _, _, _, _ = DA_loss(
                net_features["{0}".format(i)],
                tf.argmax(labels, axis=1),
                FLAGS.num_classes,
                s=scale,
                m=margin,
                scope=('dmlnet_%d' % i),
                is_cross=is_cross,
                reuse=reuse)
            net_pred["{0}".format(i)] = layers.softmax(
                scale_pred * net_predict["{0}".format(i)], scope='predictions')
            ## if the maximum probability of semi data is larger than threshold, update the feature centers.
            softmax_logits = net_pred["{0}".format(i)]
            ones = array_ops.ones_like(softmax_logits,
                                       dtype=softmax_logits.dtype)
            zeros = array_ops.zeros_like(softmax_logits,
                                         dtype=softmax_logits.dtype)
            threshold = 0.7 * array_ops.ones_like(
                softmax_logits,
                dtype=softmax_logits.dtype)  #threshold is set as 0.85
            threshold_softmax_logits = array_ops.where(
                softmax_logits > threshold, ones, zeros)
            threshold_softmax_logits = tf.reduce_max(threshold_softmax_logits,
                                                     axis=-1)
            idx = tf.where(threshold_softmax_logits > 0.95)
            feats = tf.gather_nd(net_endpoints["{0}".format(i)]['feature'],
                                 idx)
            argmax_logits = tf.gather_nd(tf.argmax(softmax_logits, axis=1),
                                         idx)
            _, _, _, _, c_update_op["{0}".format(i)] = DA_loss(
                feats,
                argmax_logits,
                FLAGS.num_classes,
                s=scale,
                m=margin,
                scope=('dmlnet_%d' % i),
                is_cross=True,
                reuse=reuse)

            net_raw_loss["{0}".format(i)] = tf.constant(0.0)
            net_regularization["{0}".format(i)] = tf.constant(0.0)
            kl_weight = 1.0

        if i == 0:
            attention0 = net_endpoints["{0}".format(i)]['attention0']
            attention1 = net_endpoints["{0}".format(i)]['attention1']
            #images = 0.5 * (images + 0.5 * images * attention0 + 0.5 * images * attention1)
            images = (images + images * attention0 + images * attention1) / 3.0

    # Add KL loss if there are more than one network
    net_loss, kl_loss, net_reg_loss, net_total_loss, net_loss_averages, net_loss_averages_op = {}, {}, {}, {}, {}, {}

    for i in range(FLAGS.num_networks):
        net_pred["{0}".format(i)] = layers.softmax(
            scale_pred * net_predict["{0}".format(i)], scope='predictions')
    for i in range(FLAGS.num_networks):
        net_loss["{0}".format(i)] = net_raw_loss["{0}".format(
            i)] + net_regularization["{0}".format(i)]
        for j in range(FLAGS.num_networks):
            if i != j:
                kl_loss["{0}{0}".format(i, j)] = JS_loss_compute(
                    net_pred["{0}".format(i)], net_pred["{0}".format(j)])
                net_loss["{0}".format(
                    i)] += kl_weight * kl_loss["{0}{0}".format(i, j)]
                #tf.summary.scalar('kl_loss_%d%d' % (i, j), kl_loss["{0}{0}".format(i, j)])

        net_reg_loss["{0}".format(i)] = tf.add_n([
            FLAGS.weight_decay * tf.nn.l2_loss(var)
            for var in tf.trainable_variables() if 'dmlnet_%d' % i in var.name
        ])
        net_total_loss["{0}".format(
            i)] = net_loss["{0}".format(i)] + net_reg_loss["{0}".format(i)]

    return net_total_loss, c_update_op, net_pred, attention0, attention1, images
Exemple #10
0
def Unet(x, labels, keep_prob=1.0, channels=3, n_class=2, num_layers=5, features_root=64, filter_size=3, pool_size=2,summaries=True, trainable=True, reuse=False, scope='dis'):    
    with tf.variable_scope(scope, reuse=reuse):
        print(scope)
        #if scope == 'dmlnet_0':
        weight_init = tf.random_normal_initializer(mean=0.0, stddev=0.1)
        #if scope == 'dmlnet_1':
        #    weight_init = tf.random_normal_initializer(mean=0.0, stddev=0.15)
            
        end_points = {}
        logging.info(
            "Layers {num_layers}, features {features}, filter size {filter_size}x{filter_size}, pool size: {pool_size}x{pool_size}".format(
                num_layers=num_layers,
                features=features_root,
                filter_size=filter_size,
                pool_size=pool_size))

        # Placeholder for the input image
        #with tf.variable_scope("preprocessing", reuse=reuse):
        batch_size = tf.shape(x)[0]
        nx = tf.shape(x)[1]
        ny = tf.shape(x)[2]
        in_node = x

        weights = []
        biases = []
        convs = []
        pools = OrderedDict()
        deconv = OrderedDict()
        dw_h_convs = OrderedDict()
        up_h_convs = OrderedDict()

        in_size = 1000
        size = in_size
        # down layers
        for layer in range(0, num_layers):
            with tf.variable_scope("down_conv_{}".format(str(layer)), reuse=reuse):
                features = 2 ** layer * features_root
                
                conv1 = atrous_conv2d(in_node, features, kernel=3, rate=1, pad=0, pad_type='zero', scope='atrous1')
                conv2 = atrous_conv2d(in_node, features, kernel=3, rate=2, pad=0, pad_type='zero', scope='atrous2')
                conv3 = atrous_conv2d(in_node, features, kernel=3, rate=3, pad=0, pad_type='zero', scope='atrous3')
                gamma1 = tf.get_variable("GGamma1", [1], initializer=tf.constant_initializer(1/3.0))
                gamma2 = tf.get_variable("GGamma2", [1], initializer=tf.constant_initializer(1/3.0))
                gamma3 = tf.get_variable("GGamma3", [1], initializer=tf.constant_initializer(1/3.0))
                '''tf.summary.scalar("down_conv_%d" % layer + '/gamma1', gamma1)
                tf.summary.scalar("down_conv_%d" % layer + '/gamma2', gamma2)
                tf.summary.scalar("down_conv_%d" % layer + '/gamma3', gamma3)'''
                conv = gamma1*conv1 + gamma2*conv2 + gamma3*conv3
                conv = tf_contrib.layers.batch_norm(conv,decay=0.9, epsilon=1e-05,center=True, scale=True, updates_collections=None,is_training=trainable)
                conv = tf.nn.relu(conv)

                size -= 4
                #if layer < num_layers - 1:
                pools[layer] = max_pool(conv, pool_size)
                in_node = pools[layer]
                size /= 2
                dw_h_convs[layer] = in_node
                print('down_conv',layer, dw_h_convs[layer])

        in_node = dw_h_convs[num_layers - 1]

        # up layers
        for layer in range(num_layers - 1, -1, -1):
            with tf.variable_scope("up_conv_{}".format(str(layer)), reuse=reuse):
                features = 2 ** (layer) * features_root
                stddev = np.sqrt(2 / (filter_size ** 2 * features))
                if layer != 0 and layer != 1:
                    wd = weight_variable_devonc([pool_size, pool_size, features, features// 2], stddev, weight_init, name="wd")
                    bd = bias_variable([features // 2], weight_init, name="bd")
                if layer == 0 or layer == 1:
                    wd = weight_variable_devonc([pool_size, pool_size, features, features], stddev, weight_init, name="wd")
                    bd = bias_variable([features], weight_init, name="bd")
                #h_deconv = tf.nn.relu(deconv2d(in_node, wd, pool_size,reuse=reuse) + bd)
                in_node = up_sample_bilinear(in_node, scale_factor=2)
                h_deconv = tf.nn.relu(conv2d(in_node, wd, bd, keep_prob,reuse=reuse))
                ######################
                if layer != 0 and layer != 1:
                    #h_deconv_concat, offset1 = deform_conv2d(h_deconv, dw_h_convs[layer], offset_kernel_size=3, kernel_size=3, num_outputs=features// 2, activation=tf.nn.relu, scope="adaptive_conv", reuse=reuse)
                    print('h_deconv',layer, h_deconv)
                    print('dw_h_convs[layer]',dw_h_convs[layer-1])
                    h_deconv_concat, offset1 = adaptive_deform_con2v(h_deconv, dw_h_convs[layer-1], features// 2, kernel_size=3, stride=1, trainable=trainable, name='adaptive_conv', reuse=reuse)
                    end_points['offset'+str(layer)] = offset1
                    h_deconv_concat = tf.concat([h_deconv_concat, h_deconv],axis=-1)
                ######################
                if layer == 0 or layer == 1:
                    #h_deconv_concat = atrous_conv2d(dw_h_convs[layer], features// 2, kernel=3, rate=2, pad=0, pad_type='zero', scope='atrous_conv')
                    #h_deconv_concat = tf.concat([dw_h_convs[layer], h_deconv],axis=-1)
                    h_deconv_concat = h_deconv
                deconv[layer] = h_deconv_concat
                print('h_deconv_concat',h_deconv_concat)

                if layer != 0:                
                    conv1 = atrous_conv2d(h_deconv_concat, features//2, kernel=3, rate=1, pad=0, pad_type='zero', scope='atrous1')
                    conv2 = atrous_conv2d(h_deconv_concat, features//2, kernel=3, rate=2, pad=0, pad_type='zero', scope='atrous2')
                    conv3 = atrous_conv2d(h_deconv_concat, features//2, kernel=3, rate=3, pad=0, pad_type='zero', scope='atrous3')
                #if layer == 0:                
                #    conv1 = atrous_conv2d(h_deconv_concat, features, kernel=features, rate=1, pad=0, pad_type='zero', scope='atrous1')
                #    conv2 = atrous_conv2d(h_deconv_concat, features, kernel=features, rate=2, pad=0, pad_type='zero', scope='atrous2')
                #    conv3 = atrous_conv2d(h_deconv_concat, features, kernel=features, rate=3, pad=0, pad_type='zero', scope='atrous3')
                    beta1 = tf.get_variable("GGammaalphabeta1", [1], initializer=tf.constant_initializer(1/3.0))
                    beta2 = tf.get_variable("GGammaalphabeta2", [1], initializer=tf.constant_initializer(1/3.0))
                    beta3 = tf.get_variable("GGammaalphabeta3", [1], initializer=tf.constant_initializer(1/3.0))
                    '''tf.summary.scalar("up_conv_%d" % layer + '/alphabeta1', beta1)
                    tf.summary.scalar("up_conv_%d" % layer + '/alphabeta2', beta2)
                    tf.summary.scalar("up_conv_%d" % layer + '/alphabeta3', beta3)'''
                    conv = beta1*conv1 + beta2*conv2 + beta3*conv3
                    conv = tf_contrib.layers.batch_norm(conv,decay=0.9, epsilon=1e-05,center=True, scale=True, updates_collections=None,is_training=trainable)
                    in_node = tf.nn.relu(conv)
                    up_h_convs[layer] = in_node
                    print('up_h_convs[layer]',up_h_convs[layer])
                    size *= 2
                    size -= 4

        # Output Map
        #with tf.variable_scope("output_map", reuse=reuse):
        weight = weight_variable([1, 1, features_root, n_class], stddev, weight_init, name = 'out_w')
        bias = bias_variable([n_class], weight_init, name="bias")
        conv = conv2d(in_node, weight, bias, tf.constant(1.0),reuse=reuse)
            #output_map = tf.nn.relu(conv)
        output_map = conv
        print(output_map)
        #up_h_convs["out"] = output_map

        '''if summaries:
            with tf.name_scope("summaries"):
                for i, (c1, c2) in enumerate(convs):
                    tf.summary.image('summary_conv_%02d_01' % i, get_image_summary(c1))
                    tf.summary.image('summary_conv_%02d_02' % i, get_image_summary(c2))

                for k in pools.keys():
                    tf.summary.image('summary_pool_%02d' % k, get_image_summary(pools[k]))

                for k in deconv.keys():
                    tf.summary.image('summary_deconv_concat_%02d' % k, get_image_summary(deconv[k]))

                ''''''for k in dw_h_convs.keys():
                    #tf.summary.histogram("dw_convolution_%02d" % k + '/activations', dw_h_convs[k])
                    tf.summary.scalar("down_conv_%d" % k + '/gamma1', gamma1)
                    tf.summary.scalar("down_conv_%d" % k + '/gamma2', gamma2)
                    tf.summary.scalar("down_conv_%d" % k + '/gamma3', gamma3)

                for k in up_h_convs.keys():
                    #tf.summary.histogram("up_convolution_%s" % k + '/activations', up_h_convs[k])
                    tf.summary.scalar("up_conv_%d" % k + '/alphabeta1', beta1)
                    tf.summary.scalar("up_conv_%d" % k + '/alphabeta2', beta2)
                    tf.summary.scalar("up_conv_%d" % k + '/alphabeta3', beta3)''''''
                tf.summary.image("out" , get_image_summary(tf.expand_dims(tf.argmax(output_map,-1),-1)))
                tf.summary.image("label" , get_image_summary(tf.expand_dims(tf.argmax(labels,-1),-1)))
                tf.summary.image("offset" , get_image_summary(offset1))
                tf.summary.image("input" , tf.expand_dims(x[0,:,:,:],0))'''

        variables = []
        for w1, w2 in weights:
            variables.append(w1)
            variables.append(w2)

        for b1, b2 in biases:
            variables.append(b1)
            variables.append(b2)
            
        end_points['Logits'] = output_map
        end_points['Predictions'] = layers.softmax(output_map, scope='predictions')

        return output_map,end_points
Exemple #11
0
def resnet_v2(
        inputs,
        blocks,
        num_classes=None,
        is_training=None,
        global_pool=True,
        output_stride=None,
        include_root_block=True,
        reuse=None,
        scope=None,
        isFetchDictForDebug=False,  # added by CCJ for code debugging!!!
):
    """Generator for v2 (preactivation) ResNet models.

  This function generates a family of ResNet v2 models. See the resnet_v2_*()
  methods for specific model instantiations, obtained by selecting different
  block instantiations that produce ResNets of various depths.

  Training for image classification on Imagenet is usually done with [224, 224]
  inputs, resulting in [7, 7] feature maps at the output of the last ResNet
  block for the ResNets defined in [1] that have nominal stride equal to 32.
  However, for dense prediction tasks we advise that one uses inputs with
  spatial dimensions that are multiples of 32 plus 1, e.g., [321, 321]. In
  this case the feature maps at the ResNet output will have spatial shape
  [(height - 1) / output_stride + 1, (width - 1) / output_stride + 1]
  and corners exactly aligned with the input image corners, which greatly
  facilitates alignment of the features to the image. Using as input [225, 225]
  images results in [8, 8] feature maps at the output of the last ResNet block.

  For dense prediction tasks, the ResNet needs to run in fully-convolutional
  (FCN) mode and global_pool needs to be set to False. The ResNets in [1, 2] all
  have nominal stride equal to 32 and a good choice in FCN mode is to use
  output_stride=16 in order to increase the density of the computed features at
  small computational and memory overhead, cf. http://arxiv.org/abs/1606.00915.

  Args:
    inputs: A tensor of size [batch, height_in, width_in, channels].
    blocks: A list of length equal to the number of ResNet blocks. Each element
      is a resnet_utils.Block object describing the units in the block.
    num_classes: Number of predicted classes for classification tasks. If None
      we return the features before the logit layer.
    is_training: whether is training or not. If None, the value inherited from
      the resnet_arg_scope is used. Specifying value None is deprecated.
    global_pool: If True, we perform global average pooling before computing the
      logits. Set to True for image classification, False for dense prediction.
    output_stride: If None, then the output will be computed at the nominal
      network stride. If output_stride is not None, it specifies the requested
      ratio of input to output spatial resolution.
    include_root_block: If True, include the initial convolution followed by
      max-pooling, if False excludes it. If excluded, `inputs` should be the
      results of an activation-less convolution.
    reuse: whether or not the network and its variables should be reused. To be
      able to reuse 'scope' must be given.
    scope: Optional variable_scope.


  Returns:
    net: A rank-4 tensor of size [batch, height_out, width_out, channels_out].
      If global_pool is False, then height_out and width_out are reduced by a
      factor of output_stride compared to the respective height_in and width_in,
      else both height_out and width_out equal one. If num_classes is None, then
      net is the output of the last ResNet block, potentially after global
      average pooling. If num_classes is not None, net contains the pre-softmax
      activations.
    end_points: A dictionary from components of the network to the corresponding
      activation.

  Raises:
    ValueError: If the target output_stride is not valid.
  """
    fetch_dict = {}
    with variable_scope.variable_scope(scope,
                                       'resnet_v2', [inputs],
                                       reuse=reuse) as sc:
        """ Comments added by CCJ: 
        here 'resnet_v2' is default_name, in case the 'scope' is None.
        If `scope` here is provided, then the default name won't be used.
    """
        end_points_collection = sc.original_name_scope + '_end_points'
        with arg_scope(
            [layers_lib.conv2d, bottleneck, resnet_utils.stack_blocks_dense],
                outputs_collections=end_points_collection):
            if is_training is not None:
                bn_scope = arg_scope([layers.batch_norm],
                                     is_training=is_training)
            else:
                bn_scope = arg_scope([])
            with bn_scope:
                net = inputs
                if include_root_block:
                    if output_stride is not None:
                        if output_stride % 4 != 0:
                            raise ValueError(
                                'The output_stride needs to be a multiple of 4.'
                            )
                        output_stride /= 4
                    # We do not include batch normalization or activation functions in
                    # conv1 because the first ResNet unit will perform these. Cf.
                    # Appendix of [2].
                    with arg_scope([layers_lib.conv2d],
                                   activation_fn=None,
                                   normalizer_fn=None):
                        net = resnet_utils.conv2d_same(net,
                                                       64,
                                                       7,
                                                       stride=2,
                                                       scope='conv1')
                        fetch_dict['x_conv1'] = net  # added by CCJ;
                    # updated by CCJ:
                    #> see:https://www.corvil.com/kb/what-is-the-difference-between-same-and-valid-padding-in-tf-nn-max-pool-of-tensorflow
                    net = layers.max_pool2d(net, [3, 3],
                                            stride=2,
                                            scope='pool1')
                    #net = layers.max_pool2d(net, [3, 3], stride=2, padding='VALID', scope='pool1') # 'VALID' is not default;
                    #net = layers.max_pool2d(net, [3, 3], stride=2, padding='SAME', scope='pool1') #'SAME' is by default;
                    fetch_dict['x_maxpool'] = net  # added by CCJ;
                net = resnet_utils.stack_blocks_dense(net, blocks,
                                                      output_stride)
                fetch_dict['x_layer4'] = net  # added by CCJ;
                # This is needed because the pre-activation variant does not have batch
                # normalization or activation functions in the residual unit output. See
                # Appendix of [2].
                net = layers.batch_norm(net,
                                        activation_fn=nn_ops.relu,
                                        scope='postnorm')
                fetch_dict['x_postnorm'] = net
                if global_pool:
                    # Global average pooling.
                    net = math_ops.reduce_mean(
                        net,
                        [
                            1, 2
                        ],  # the dimensions to reduce, here [1,2] means H and W dimension, due to NHWC format;
                        name='pool5',
                        #keep_dims=True,
                        #Replace keep_dims with keepdims in TF calls;
                        keepdims=True)
                    fetch_dict['x_global_pool'] = net
                if num_classes is not None:
                    net = layers_lib.conv2d(net,
                                            num_classes, [1, 1],
                                            activation_fn=None,
                                            normalizer_fn=None,
                                            scope='logits')
                # Convert end_points_collection into a dictionary of end_points.
                end_points = utils.convert_collection_to_dict(
                    end_points_collection)
                if num_classes is not None:
                    end_points['predictions'] = layers.softmax(
                        net, scope='predictions')
                if isFetchDictForDebug:
                    return net, end_points, fetch_dict
                else:
                    return net, end_points
def resnet_v1(inputs,
              blocks,
              num_classes=None,
              is_training=True,
              global_pool=True,
              output_stride=None,
              include_root_block=True,
              reuse=None,
              scope=None):
    """Generator for v1 ResNet models.
  Args:
    inputs: A tensor of size [batch, height_in, width_in, channels].
    blocks: A list of length equal to the number of ResNet blocks. Each element
      is a resnet_utils.Block object describing the units in the block.
    num_classes: Number of predicted classes for classification tasks. If None
      we return the features before the logit layer.
    is_training: whether batch_norm layers are in training mode.
    global_pool: If True, we perform global average pooling before computing the
      logits. Set to True for image classification, False for dense prediction.
    output_stride: If None, then the output will be computed at the nominal
      network stride. If output_stride is not None, it specifies the requested
      ratio of input to output spatial resolution.
    include_root_block: If True, include the initial convolution followed by
      max-pooling, if False excludes it.
    reuse: whether or not the network and its variables should be reused. To be
      able to reuse 'scope' must be given.
    scope: Optional variable_scope.
  Returns:
    net: A rank-4 tensor of size [batch, height_out, width_out, channels_out].
      If global_pool is False, then height_out and width_out are reduced by a
      factor of output_stride compared to the respective height_in and width_in,
      else both height_out and width_out equal one. If num_classes is None, then
      net is the output of the last ResNet block, potentially after global
      average pooling. If num_classes is not None, net contains the pre-softmax
      activations.
    end_points: A dictionary from components of the network to the corresponding
      activation.
  Raises:
    ValueError: If the target output_stride is not valid.
  """
    with variable_scope.variable_scope(scope,
                                       'resnet_v1', [inputs],
                                       reuse=reuse) as sc:
        end_points_collection = sc.original_name_scope + '_end_points'
        with arg_scope(
            [layers.conv3d, bottleneck, resnet_3d_utils.stack_blocks_dense],
                outputs_collections=end_points_collection):
            with arg_scope([layers.batch_norm], is_training=is_training):
                net = inputs
                #        if include_root_block:
                #          if output_stride is not None:
                #            if output_stride % 4 != 0:
                #              raise ValueError('The output_stride needs to be a multiple of 4.')
                #            output_stride /= 4
                #          net = resnet_utils.conv2d_same(net, 64, 7, stride=2, scope='conv1')
                #          net = layers_lib.max_pool2d(net, [3, 3], stride=2, scope='pool1')
                net = resnet_3d_utils.stack_blocks_dense(
                    net, blocks, output_stride)
                if global_pool:
                    net = math_ops.reduce_mean(net, [1, 2, 3],
                                               name='pool5',
                                               keepdims=True)
                if num_classes is not None:
                    net = layers.conv3d(net,
                                        num_classes, [1, 1, 1],
                                        activation_fn=None,
                                        normalizer_fn=None,
                                        scope='logits')

                # Convert end_points_collection into a dictionary of end_points.
                end_points = utils.convert_collection_to_dict(
                    end_points_collection)
                if num_classes is not None and num_classes != 1:
                    end_points['predictions'] = layers_lib.softmax(
                        net, scope='predictions')
                    net = tf.squeeze(net)
                elif num_classes == 1:
                    net = tf.squeeze(net)
                    end_points['probs'] = tf.nn.sigmoid(net)

                return net, end_points
Exemple #13
0
    def resnet_v2_spkid(self, inputs, spk_labels, blocks, num_classes,
                        is_training, global_pool, output_stride, reuse, scope):

        with arg_scope(resnet_v2.resnet_arg_scope()):
            with tf.variable_scope(scope, 'resnet_v2', [inputs],
                                   reuse=reuse) as sc:
                end_points_collection = sc.original_name_scope + '_end_points'
                with arg_scope([
                        layers_lib.conv2d, resnet_v2.bottleneck, slim.conv2d,
                        self.stack_blocks_dense
                ],
                               outputs_collections=end_points_collection):
                    with arg_scope(
                        [layers_lib.conv2d],
                            weights_regularizer=None,
                            weights_initializer=tf.contrib.layers.
                            xavier_initializer(),
                            biases_initializer=tf.constant_initializer(0.001)):

                        with arg_scope(
                            [layers.batch_norm],
                                is_training=is_training,
                                decay=0.9,
                                epsilon=1e-3,
                                scale=True,
                                param_initializers={
                                    "beta":
                                    tf.constant_initializer(value=0),
                                    "gamma":
                                    tf.random_normal_initializer(mean=1,
                                                                 stddev=0.045),
                                    "moving_mean":
                                    tf.constant_initializer(value=0),
                                    "moving_variance":
                                    tf.constant_initializer(value=1)
                                }):
                            net = inputs
                            with arg_scope([layers_lib.conv2d],
                                           activation_fn=None,
                                           normalizer_fn=None,
                                           weights_regularizer=None):
                                net = resnet_utils.conv2d_same(net,
                                                               64,
                                                               13,
                                                               1,
                                                               scope='conv1')
                            # net = layers.max_pool2d(net, [2, 2], stride=2, scope='pool1')
                            # net = resnet_utils.stack_blocks_dense(net, blocks, output_stride)
                            net = self.stack_blocks_dense(
                                net, blocks, output_stride)
                            net = layers.batch_norm(net,
                                                    activation_fn=tf.nn.relu,
                                                    scope='postnorm')
                            end_points = utils.convert_collection_to_dict(
                                end_points_collection)
                            net = layers_lib.conv2d(net,
                                                    512, [1, 5],
                                                    stride=1,
                                                    activation_fn=None,
                                                    normalizer_fn=None,
                                                    scope='res_fc',
                                                    padding='VALID')
                            end_points[sc.name + '/res_fc'] = net
                            net = layers.batch_norm(net,
                                                    activation_fn=tf.nn.relu,
                                                    scope='res_fc_bn')

                            if global_pool:
                                ## net : batchsize X W(frame_length) X 1 X Dim
                                ## Global average pooling.
                                # net = tf.reduce_mean(net, [1], name='pool5', keep_dims=True)

                                ## Global statistical pooling
                                # mean,var = tf.nn.moments(net,1,name='pool5', keep_dims=True)
                                # net = tf.concat([mean,var],3)

                                ## Apply attention + stats
                                attention = self.attention_layer(net)
                                end_points['attention'] = attention
                                mean, std = tf.nn.weighted_moments(
                                    net, 1, attention, keep_dims=True)
                                net = tf.concat([mean, std], 3)

                                end_points['global_pool'] = net

                            ## Fully Connected layers
                            ## fc1
                            net = layers_lib.conv2d(net,
                                                    1000, [1, 1],
                                                    stride=1,
                                                    activation_fn=None,
                                                    normalizer_fn=None,
                                                    scope='fc1')
                            end_points[sc.name + '/fc1'] = net
                            net = layers.batch_norm(net,
                                                    activation_fn=tf.nn.relu,
                                                    scope='fc1_bn')
                            ## fc2
                            net = layers_lib.conv2d(net,
                                                    512, [1, 1],
                                                    stride=1,
                                                    activation_fn=None,
                                                    normalizer_fn=None,
                                                    scope='fc2')
                            end_points[sc.name + '/fc2'] = net

                            ## output layer
                            ## For AM-softmax
                            net = tf.squeeze(net, [1, 2],
                                             name='SpatialSqueeze')
                            end_points[sc.name + '/spatial_squeeze'] = net
                            net, embedding = self.AM_logits_compute(
                                net, spk_labels, num_classes, is_training)
                            end_points[sc.name + '/logits'] = net
                            end_points[sc.name + '/fc3'] = embedding

                            ## for softmax
                            #                             net = layers.batch_norm(net, activation_fn=tf.nn.relu, scope='fc2_bn')
                            #                             net = layers_lib.conv2d(net, num_classes, [1, 1], stride=1, activation_fn=None,
                            #                                             normalizer_fn=None, scope='logits')
                            #                             end_points[sc.name + '/logits'] = net
                            #                             net = tf.squeeze(net, [1, 2], name='SpatialSqueeze')
                            #                             end_points[sc.name + '/spatial_squeeze'] = net

                            ## loss
                            end_points['predictions'] = layers.softmax(
                                net, scope='predictions')
                            loss = tf.reduce_mean(
                                tf.nn.sparse_softmax_cross_entropy_with_logits(
                                    labels=spk_labels, logits=net))
                            end_points[sc.name + '/loss'] = loss
                            end_points[sc.name + '/spk_labels'] = spk_labels

                            return loss, end_points
Exemple #14
0
def Unet(x,
         labels,
         keep_prob=1.0,
         channels=3,
         n_class=2,
         num_layers=5,
         features_root=64,
         filter_size=3,
         pool_size=2,
         summaries=True,
         trainable=True,
         reuse=False,
         scope='dis'):
    with tf.variable_scope(scope, reuse=reuse):
        print(scope)

        end_points = {}
        logging.info(
            "Layers {layers}, features {features}, filter size {filter_size}x{filter_size}, pool size: {pool_size}x{pool_size}"
            .format(layers=layers,
                    features=features_root,
                    filter_size=filter_size,
                    pool_size=pool_size))

        # Placeholder for the input image
        with tf.name_scope("preprocessing"):
            batch_size = tf.shape(x)[0]
            nx = tf.shape(x)[1]
            ny = tf.shape(x)[2]
            in_node = x

        weights = []
        biases = []
        convs = []
        pools = OrderedDict()
        deconv = OrderedDict()
        dw_h_convs = OrderedDict()
        up_h_convs = OrderedDict()

        in_size = 1000
        size = in_size
        # down layers
        for layer in range(0, num_layers):
            with tf.variable_scope("down_conv_{}".format(str(layer)),
                                   reuse=reuse):
                features = 2**layer * features_root
                stddev = np.sqrt(2 / (filter_size**2 * features))
                if layer == 0:
                    w1 = weight_variable(
                        [filter_size, filter_size, channels, features],
                        stddev,
                        weight_init,
                        name="w1")
                else:
                    w1 = weight_variable(
                        [filter_size, filter_size, features // 2, features],
                        stddev,
                        weight_init,
                        name="w1")

                w2 = weight_variable(
                    [filter_size, filter_size, features, features],
                    stddev,
                    weight_init,
                    name="w2")
                b1 = bias_variable([features], weight_init, name="b1")
                b2 = bias_variable([features], weight_init, name="b2")

                in_node = tf.nn.max_pool(in_node,
                                         ksize=[1, 3, 3, 1],
                                         strides=[1, 1, 1, 1],
                                         padding='SAME')
                conv1 = conv2d(in_node, w1, b1, keep_prob, reuse=reuse)
                conv1 = -tf.nn.max_pool(-conv1,
                                        ksize=[1, 3, 3, 1],
                                        strides=[1, 1, 1, 1],
                                        padding='SAME')

                conv1 = tf_contrib.layers.batch_norm(conv1,
                                                     decay=0.9,
                                                     epsilon=1e-05,
                                                     center=True,
                                                     scale=True,
                                                     updates_collections=None,
                                                     is_training=True)
                tmp_h_conv = tf.nn.relu(conv1)

                tmp_h_conv = tf.nn.max_pool(tmp_h_conv,
                                            ksize=[1, 3, 3, 1],
                                            strides=[1, 1, 1, 1],
                                            padding='SAME')
                conv2 = conv2d(tmp_h_conv, w2, b2, keep_prob, reuse=reuse)
                conv2 = -tf.nn.max_pool(-conv2,
                                        ksize=[1, 3, 3, 1],
                                        strides=[1, 1, 1, 1],
                                        padding='SAME')

                conv2 = tf_contrib.layers.batch_norm(conv2,
                                                     decay=0.9,
                                                     epsilon=1e-05,
                                                     center=True,
                                                     scale=True,
                                                     updates_collections=None,
                                                     is_training=True)
                dw_h_convs[layer] = tf.nn.relu(conv2)
                print(dw_h_convs[layer])

                weights.append((w1, w2))
                biases.append((b1, b2))
                convs.append((conv1, conv2))

                size -= 4
                if layer < num_layers - 1:
                    pools[layer] = max_pool(dw_h_convs[layer], pool_size)
                    in_node = pools[layer]
                    size /= 2

        in_node = dw_h_convs[num_layers - 1]

        # up layers
        for layer in range(num_layers - 2, -1, -1):
            with tf.variable_scope("up_conv_{}".format(str(layer)),
                                   reuse=reuse):
                features = 2**(layer + 1) * features_root
                stddev = np.sqrt(2 / (filter_size**2 * features))

                wd = weight_variable_devonc(
                    [pool_size, pool_size, features // 2, features],
                    stddev,
                    weight_init,
                    name="wd")
                bd = bias_variable([features // 2], weight_init, name="bd")
                h_deconv = tf.nn.relu(
                    deconv2d(in_node, wd, pool_size, reuse=reuse) + bd)
                h_deconv_concat = tf.concat([dw_h_convs[layer], h_deconv],
                                            axis=-1)
                deconv[layer] = h_deconv_concat

                w1 = weight_variable(
                    [filter_size, filter_size, features, features // 2],
                    stddev,
                    weight_init,
                    name="w1")
                w2 = weight_variable(
                    [filter_size, filter_size, features // 2, features // 2],
                    stddev,
                    weight_init,
                    name="w2")
                b1 = bias_variable([features // 2], weight_init, name="b1")
                b2 = bias_variable([features // 2], weight_init, name="b2")

                h_deconv_concat = tf.nn.max_pool(h_deconv_concat,
                                                 ksize=[1, 3, 3, 1],
                                                 strides=[1, 1, 1, 1],
                                                 padding='SAME')
                conv1 = conv2d(h_deconv_concat, w1, b1, keep_prob, reuse=reuse)
                conv1 = -tf.nn.max_pool(-conv1,
                                        ksize=[1, 3, 3, 1],
                                        strides=[1, 1, 1, 1],
                                        padding='SAME')

                conv1 = tf_contrib.layers.batch_norm(conv1,
                                                     decay=0.9,
                                                     epsilon=1e-05,
                                                     center=True,
                                                     scale=True,
                                                     updates_collections=None,
                                                     is_training=True)
                h_conv = tf.nn.relu(conv1)

                h_conv = tf.nn.max_pool(h_conv,
                                        ksize=[1, 3, 3, 1],
                                        strides=[1, 1, 1, 1],
                                        padding='SAME')
                conv2 = conv2d(h_conv, w2, b2, keep_prob, reuse=reuse)
                conv2 = -tf.nn.max_pool(-conv2,
                                        ksize=[1, 3, 3, 1],
                                        strides=[1, 1, 1, 1],
                                        padding='SAME')

                conv2 = tf_contrib.layers.batch_norm(conv2,
                                                     decay=0.9,
                                                     epsilon=1e-05,
                                                     center=True,
                                                     scale=True,
                                                     updates_collections=None,
                                                     is_training=True)
                in_node = tf.nn.relu(conv2)
                up_h_convs[layer] = in_node
                print(up_h_convs[layer])

                weights.append((w1, w2))
                biases.append((b1, b2))
                convs.append((conv1, conv2))

                size *= 2
                size -= 4

        # Output Map
        with tf.name_scope("output_map"):
            weight = weight_variable([1, 1, features_root, n_class], stddev,
                                     weight_init)
            bias = bias_variable([n_class], weight_init, name="bias")
            conv = conv2d(in_node, weight, bias, tf.constant(1.0), reuse=reuse)
            #output_map = tf.nn.relu(conv)
            output_map = conv
            up_h_convs["out"] = output_map
        '''if summaries:
            with tf.name_scope("summaries"):
                for i, (c1, c2) in enumerate(convs):
                    tf.summary.image('summary_conv_%02d_01' % i, get_image_summary(c1))
                    tf.summary.image('summary_conv_%02d_02' % i, get_image_summary(c2))

                for k in pools.keys():
                    tf.summary.image('summary_pool_%02d' % k, get_image_summary(pools[k]))

                for k in deconv.keys():
                    tf.summary.image('summary_deconv_concat_%02d' % k, get_image_summary(deconv[k]))

                ''' '''for k in dw_h_convs.keys():
                    #tf.summary.histogram("dw_convolution_%02d" % k + '/activations', dw_h_convs[k])
                    tf.summary.scalar("down_conv_%d" % k + '/gamma1', gamma1)
                    tf.summary.scalar("down_conv_%d" % k + '/gamma2', gamma2)
                    tf.summary.scalar("down_conv_%d" % k + '/gamma3', gamma3)

                for k in up_h_convs.keys():
                    #tf.summary.histogram("up_convolution_%s" % k + '/activations', up_h_convs[k])
                    tf.summary.scalar("up_conv_%d" % k + '/alphabeta1', beta1)
                    tf.summary.scalar("up_conv_%d" % k + '/alphabeta2', beta2)
                    tf.summary.scalar("up_conv_%d" % k + '/alphabeta3', beta3)''' '''
                tf.summary.image("out" , get_image_summary(tf.expand_dims(tf.argmax(output_map,-1),-1)))
                tf.summary.image("label" , get_image_summary(tf.expand_dims(tf.argmax(labels,-1),-1)))
                tf.summary.image("offset" , get_image_summary(offset1))
                tf.summary.image("input" , tf.expand_dims(x[0,:,:,:],0))'''

        variables = []
        for w1, w2 in weights:
            variables.append(w1)
            variables.append(w2)

        for b1, b2 in biases:
            variables.append(b1)
            variables.append(b2)

        end_points['Logits'] = output_map
        end_points['Predictions'] = layers.softmax(output_map,
                                                   scope='predictions')
        end_points['offset'] = layers.softmax(output_map, scope='predictions')

        return output_map, end_points
Exemple #15
0
def resnet_v2(inputs,
              blocks,
              num_classes=None,
              is_training=None,
              global_pool=True,
              output_stride=None,
              include_root_block=True,
              reuse=None,
              scope=None):
    with variable_scope.variable_scope(scope,
                                       'resnet_v2', [inputs],
                                       reuse=reuse) as sc:
        end_points_collection = sc.original_name_scope + '_end_points'
        with arg_scope(
            [layers.convolution, bottleneck, resnet_utils.stack_blocks_dense],
                outputs_collections=end_points_collection):
            if is_training is not None:
                bn_scope = arg_scope([layers.batch_norm],
                                     is_training=is_training)
            else:
                bn_scope = arg_scope([])
            with bn_scope:
                net = inputs
                if include_root_block:
                    if output_stride is not None:
                        if output_stride % 4 != 0:
                            raise ValueError(
                                'The output_stride needs to be a multiple of 4.'
                            )
                        output_stride /= 4
                    # We do not include batch normalization or activation functions in
                    # conv1 because the first ResNet unit will perform these. Cf.
                    # Appendix of [2].
                    with arg_scope([layers.convolution],
                                   activation_fn=None,
                                   normalizer_fn=None):
                        net = conv1d_same(net, 64, 7, stride=2, scope='conv1')
                    net = max_pool1d(net, 3, stride=2, scope='pool1')
                net = resnet_utils.stack_blocks_dense(net, blocks,
                                                      output_stride)
                # This is needed because the pre-activation variant does not have batch
                # normalization or activation functions in the residual unit output. See
                # Appendix of [2].
                net = layers.batch_norm(net,
                                        activation_fn=nn_ops.relu,
                                        scope='postnorm')
                if global_pool:
                    # Global average pooling.
                    net = math_ops.reduce_mean(net, [1],
                                               name='pool5',
                                               keep_dims=True)
                if num_classes is not None:
                    net = layers.convolution(net,
                                             num_classes,
                                             1,
                                             activation_fn=None,
                                             normalizer_fn=None,
                                             scope='logits')
                    net = tf.squeeze(net)
                # Convert end_points_collection into a dictionary of end_points.
                end_points = utils.convert_collection_to_dict(
                    end_points_collection)
                if num_classes is not None:
                    end_points['predictions'] = layers.softmax(
                        net, scope='predictions')
                return net, end_points
Exemple #16
0
def resnet_v1(inputs,
              blocks,
              num_classes=None,
              is_training=True,
              global_pool=True,
              output_stride=None,
              include_root_block=True,
              reuse=None,
              scope=None):
    """Generator for v1 ResNet model.

  This function generates a family of ResNet v1 model. See the resnet_v1_*()
  methods for specific model instantiations, obtained by selecting different
  block instantiations that produce ResNets of various depths.

  Training for image classification on Imagenet is usually done with [224, 224]
  inputs, resulting in [7, 7] feature maps at the output of the last ResNet
  block for the ResNets defined in [1] that have nominal stride equal to 32.
  However, for dense prediction tasks we advise that one uses inputs with
  spatial dimensions that are multiples of 32 plus 1, e.g., [321, 321]. In
  this case the feature maps at the ResNet output will have spatial shape
  [(height - 1) / output_stride + 1, (width - 1) / output_stride + 1]
  and corners exactly aligned with the input image corners, which greatly
  facilitates alignment of the features to the image. Using as input [225, 225]
  images results in [8, 8] feature maps at the output of the last ResNet block.

  For dense prediction tasks, the ResNet needs to run in fully-convolutional
  (FCN) mode and global_pool needs to be set to False. The ResNets in [1, 2] all
  have nominal stride equal to 32 and a good choice in FCN mode is to use
  output_stride=16 in order to increase the density of the computed features at
  small computational and memory overhead, cf. http://arxiv.org/abs/1606.00915.

  Args:
    inputs: A tensor of size [batch, height_in, width_in, channels].
    blocks: A list of length equal to the number of ResNet blocks. Each element
      is a resnet_utils.Block object describing the units in the block.
    num_classes: Number of predicted classes for classification tasks.
      If 0 or None, we return the features before the logit layer.
    is_training: whether batch_norm layers are in training mode. If this is set
      to None, the callers can specify slim.batch_norm's is_training parameter
      from an outer slim.arg_scope.
    global_pool: If True, we perform global average pooling before computing the
      logits. Set to True for image classification, False for dense prediction.
    output_stride: If None, then the output will be computed at the nominal
      network stride. If output_stride is not None, it specifies the requested
      ratio of input to output spatial resolution.
    include_root_block: If True, include the initial convolution followed by
      max-pooling, if False excludes it.
    spatial_squeeze: if True, logits is of shape [B, C], if false logits is
        of shape [B, 1, 1, C], where B is batch_size and C is number of classes.
        To use this parameter, the input images must be smaller than 300x300
        pixels, in which case the output logit layer does not contain spatial
        information and can be removed.
    store_non_strided_activations: If True, we compute non-strided (undecimated)
      activations at the last unit of each block and store them in the
      `outputs_collections` before subsampling them. This gives us access to
      higher resolution intermediate activations which are useful in some
      dense prediction problems but increases 4x the computation and memory cost
      at the last unit of each block.
    reuse: whether or not the network and its variables should be reused. To be
      able to reuse 'scope' must be given.
    scope: Optional variable_scope.

  Returns:
    net: A rank-4 tensor of size [batch, height_out, width_out, channels_out].
      If global_pool is False, then height_out and width_out are reduced by a
      factor of output_stride compared to the respective height_in and width_in,
      else both height_out and width_out equal one. If num_classes is 0 or None,
      then net is the output of the last ResNet block, potentially after global
      average pooling. If num_classes a non-zero integer, net contains the
      pre-softmax activations.
    end_points: A dictionary from components of the network to the corresponding
      activation.

  Raises:
    ValueError: If the target output_stride is not valid.
  """
    with variable_scope.variable_scope(scope,
                                       'resnet_v1', [inputs],
                                       reuse=reuse) as sc:
        end_points_collection = sc.original_name_scope + '_end_points'
        with arg_scope(
            [layers.conv2d, bottleneck, resnet_utils.stack_blocks_dense],
                outputs_collections=end_points_collection):
            #with (slim.arg_scope([slim.batch_norm], is_training=is_training) #delete batch_norm
            #if is_training is not None else NoOpScope()):
            net = inputs
            if include_root_block:
                if output_stride is not None:
                    if output_stride % 4 != 0:
                        raise ValueError(
                            'The output_stride needs to be a multiple of 4.')
                    output_stride /= 4
                    #net = resnet_utils.conv2d_same(net, 64, 7, stride=2, scope='conv1')
                net = resnet_utils.conv2d_same(net,
                                               24,
                                               3,
                                               stride=2,
                                               scope='conv1')
                net = layers_lib.max_pool2d(net, [3, 3],
                                            stride=2,
                                            scope='pool1')
            net = resnet_utils.stack_blocks_dense(net, blocks, output_stride)
            # Convert end_points_collection into a dictionary of end_points.
            #end_points = slim.utils.convert_collection_to_dict(
            #    end_points_collection)

            if global_pool:
                # Global average pooling.
                net = math_ops.reduce_mean(net, [1, 2],
                                           name='pool5',
                                           keep_dims=True)
                #end_points['global_pool'] = net
            if num_classes is not None:
                net = layers.conv2d(net,
                                    num_classes, [1, 1],
                                    activation_fn=None,
                                    normalizer_fn=None,
                                    scope='logits')
                #end_points[sc.name + '/logits'] = net
            end_points = utils.convert_collection_to_dict(
                end_points_collection)
            if num_classes is not None:
                end_points['predictions'] = layers_lib.softmax(
                    net, scope='predictions')
            return net, end_points