Exemple #1
0
def node_to_graph(node, ctx, nocompile_decorators):
    """Convert Python code to equivalent TF graph mode code.

  Args:
    node: A Python AST node representing the code to convert.
    ctx: An EntityContext object.
    nocompile_decorators: A tuple containing decorators to be stripped from
        functions during conversion.

  Returns:
    A tuple (node, deps):
        * node: A Python ast node, representing the converted code.
        * deps: A set of strings, the fully qualified names of entity
            dependencies that this node has.
  """
    # TODO(mdan): Verify arguments for correctness.

    # TODO(mdan): Factor out common elements.
    # These include:
    #   * code move between blocks
    #   * visiting blocks in transformers

    # Certain steps, especially canonicalization, insert new symbols into the
    # tree, which must be accounted. Although less efficient, it is most robust
    # to re-run the analysis.

    node = _static_analysis_pass(node, ctx)
    # Past this point, line numbers are no longer accurate so we ignore the
    # source.
    # TODO(mdan): Is it feasible to reconstruct intermediate source code?
    ctx.source_code = None
    node = decorators.transform(node, nocompile_decorators)
    node = break_statements.transform(node, ctx)
    node = asserts.transform(node, ctx)

    # Note: sequencing continue canonicalization before for loop one avoids
    # dealing with the extra loop increment operation that the for
    # canonicalization creates.
    node = continue_statements.transform(node, ctx)
    ctx.namespace['len'] = len

    node = _static_analysis_pass(node, ctx)
    node = for_loops.transform(node, ctx)
    # for_loops may insert new global references.
    node = builtin_functions.transform(node, ctx)
    # TODO(mdan): Kept for CL consistency. Remove.
    # builtin_functions may insert new global references.
    ctx.namespace['print'] = print

    node = _static_analysis_pass(node, ctx)
    node = call_trees.transform(node, ctx, config.DEFAULT_UNCOMPILED_MODULES,
                                nocompile_decorators)
    node = control_flow.transform(node, ctx)

    # control_flow may create new symbols and change scopes.
    node = _static_analysis_pass(node, ctx)
    node = logical_expressions.transform(node)
    node = side_effect_guards.transform(node, ctx)

    return node
def node_to_graph(node, ctx, nocompile_decorators):
  """Convert Python code to equivalent TF graph mode code.

  Args:
    node: A Python AST node representing the code to convert.
    ctx: An EntityContext object.
    nocompile_decorators: A tuple containing decorators to be stripped from
        functions during conversion.

  Returns:
    A tuple (node, deps):
        * node: A Python ast node, representing the converted code.
        * deps: A set of strings, the fully qualified names of entity
            dependencies that this node has.
  """
  # TODO(mdan): Verify arguments for correctness.

  # TODO(mdan): Factor out common elements.
  # These include:
  #   * code move between blocks
  #   * visiting blocks in transformers

  # Certain steps, especially canonicalization, insert new symbols into the
  # tree, which must be accounted. Although less efficient, it is most robust
  # to re-run the analysis.

  node = _static_analysis_pass(node, ctx)
  # Past this point, line numbers are no longer accurate so we ignore the
  # source.
  # TODO(mdan): Is it feasible to reconstruct intermediate source code?
  ctx.source_code = None
  node = decorators.transform(node, nocompile_decorators)
  node = break_canonicalization.transform(node, ctx)
  node = asserts.transform(node, ctx)

  # Note: sequencing continue canonicalization before for loop one avoids
  # dealing with the extra loop increment operation that the for
  # canonicalization creates.
  node = continue_canonicalization.transform(node, ctx)
  ctx.namespace['len'] = len

  node = _static_analysis_pass(node, ctx)
  node = for_canonicalization.transform(node, ctx)
  # for_canonicalization may insert new global references.
  node = builtin_functions.transform(node, ctx)
  # builtin_functions may insert new global references.
  ctx.namespace['print'] = print

  node = _static_analysis_pass(node, ctx)
  node = call_trees.transform(node, ctx, config.DEFAULT_UNCOMPILED_MODULES,
                              nocompile_decorators)
  node = control_flow.transform(node, ctx)

  # control_flow may create new symbols and change scopes.
  node = _static_analysis_pass(node, ctx)
  node = logical_expressions.transform(node)
  node = side_effect_guards.transform(node, ctx)

  return node
def node_to_graph(node, ctx, nocompile_decorators):
  """Convert Python code to equivalent TF graph mode code.

  Args:
    node: A Python AST node representing the code to convert.
    ctx: An EntityContext object.
    nocompile_decorators: A tuple containing decorators to be stripped from
        functions during conversion.

  Returns:
    A tuple (node, deps):
        * node: A Python ast node, representing the converted code.
        * deps: A set of strings, the fully qualified names of entity
            dependencies that this node has.
  """
  # TODO(mdan): Verify arguments for correctness.

  # TODO(mdan): Factor out common elements.
  # These include:
  #   * keeping track of symbols that have been created
  #   * marking nodes (e.g. py_func wrappers) to suppress further processing
  #   * code move between blocks
  #   * insertion of new global references
  #   * visiting blocks in transformers

  # Certain steps, especially canonicalization, insert new symbols into the
  # tree, which must be accounted. Although less efficient, it is most robust
  # to re-run the analysis.

  node = _static_analysis_pass(node, ctx)
  node = decorators.transform(node, nocompile_decorators)
  node = break_canonicalization.transform(node, ctx.namer)

  # Note: sequencing continue canonicalization before for loop one avoids
  # dealing with the extra loop increment operation that the for
  # canonicalization creates.
  node = continue_canonicalization.transform(node, ctx.namer)
  ctx.namespace['len'] = len

  node = _static_analysis_pass(node, ctx)
  node = for_canonicalization.transform(node, ctx.namer)
  # for_canonicalization may insert new global references.
  node = builtin_functions.transform(node)
  # builtin_functions may insert new global references.
  ctx.namespace['print'] = print

  node = _static_analysis_pass(node, ctx)
  node = print_functions.transform(node)
  node = call_trees.transform(node, ctx.namer, ctx.namespace,
                              config.DEFAULT_UNCOMPILED_MODULES,
                              nocompile_decorators)
  node = control_flow.transform(node, ctx.namer)
  node = logical_expressions.transform(node)
  node = side_effect_guards.transform(node, ctx.namer)

  return node
Exemple #4
0
    def test_if_single_var(self):
        def test_fn(n):
            if n > 0:
                n = -n
            return n

        node = self.parse_and_analyze(test_fn, {})
        node = control_flow.transform(node, self.ctx)

        with self.compiled(node, control_flow_ops.cond) as result:
            with self.test_session() as sess:
                self.assertEqual(
                    -1, sess.run(result.test_fn(constant_op.constant(1))))
Exemple #5
0
    def test_while_single_var(self):
        def test_fn(n):
            while n > 0:
                n -= 1
            return n

        node = self.parse_and_analyze(test_fn, {})
        node = control_flow.transform(node, self.ctx)

        with self.compiled(node, control_flow_ops.while_loop) as result:
            with self.test_session() as sess:
                self.assertEqual(
                    0, sess.run(result.test_fn(constant_op.constant(5))))
  def test_while_single_var(self):

    def test_fn(n):
      while n > 0:
        n -= 1
      return n

    node = self.parse_and_analyze(test_fn, {})
    node = control_flow.transform(node, self.ctx)

    with self.compiled(node, control_flow_ops.while_loop) as result:
      with self.test_session() as sess:
        self.assertEqual(0, sess.run(result.test_fn(constant_op.constant(5))))
  def test_if_single_var(self):

    def test_fn(n):
      if n > 0:
        n = -n
      return n

    node = self.parse_and_analyze(test_fn, {})
    node = control_flow.transform(node, self.ctx)

    with self.compiled(node, control_flow_ops.cond) as result:
      with self.test_session() as sess:
        self.assertEqual(-1, sess.run(result.test_fn(constant_op.constant(1))))
  def test_while_single_var(self):

    def test_fn(n):
      while n > 0:
        n -= 1
      return n

    node = self.parse_and_analyze(test_fn, {})
    node = control_flow.transform(node, TestNamer())
    result = compiler.ast_to_object(node)
    setattr(result, 'tf', control_flow_ops)

    with self.test_session() as sess:
      self.assertEqual(0, sess.run(result.test_fn(constant_op.constant(5))))
  def test_if_single_var(self):

    def test_fn(n):
      if n > 0:
        n = -n
      return n

    node = self.parse_and_analyze(test_fn, {}, namer=TestNamer())
    node = control_flow.transform(node, self.ctx)
    result = compiler.ast_to_object(node)
    setattr(result, 'tf', control_flow_ops)

    with self.test_session() as sess:
      self.assertEqual(-1, sess.run(result.test_fn(constant_op.constant(1))))
    def test_while_single_var(self):
        def test_fn(n):
            while n > 0:
                n -= 1
            return n

        node = self.parse_and_analyze(test_fn, {})
        node = control_flow.transform(node, TestNamer())
        result = compiler.ast_to_object(node)
        setattr(result, 'tf', control_flow_ops)

        with self.test_session() as sess:
            self.assertEqual(0,
                             sess.run(result.test_fn(constant_op.constant(5))))
    def test_simple_while(self):
        def test_fn(n):
            i = 0
            s = 0
            while i < n:
                s += i
                i += 1
            return s, i, n

        node = self.parse_and_analyze(test_fn, {})
        node = control_flow.transform(node, TestNamer())
        result = compiler.ast_to_object(node)
        setattr(result, 'tf', control_flow_ops)

        with self.test_session() as sess:
            self.assertEqual((10, 5, 5),
                             sess.run(result.test_fn(constant_op.constant(5))))
Exemple #12
0
    def test_simple_while(self):
        def test_fn(n):
            i = 0
            s = 0
            while i < n:
                s += i
                i += 1
            return s, i, n

        node = self.parse_and_analyze(test_fn, {})
        node = control_flow.transform(node, self.ctx)

        with self.compiled(node, control_flow_ops.while_loop) as result:
            with self.test_session() as sess:
                self.assertEqual(
                    (10, 5, 5),
                    sess.run(result.test_fn(constant_op.constant(5))))
  def test_simple_while(self):

    def test_fn(n):
      i = 0
      s = 0
      while i < n:
        s += i
        i += 1
      return s, i, n

    node = self.parse_and_analyze(test_fn, {})
    node = control_flow.transform(node, self.ctx)

    with self.compiled(node, control_flow_ops.while_loop) as result:
      with self.test_session() as sess:
        self.assertEqual((10, 5, 5),
                         sess.run(result.test_fn(constant_op.constant(5))))
  def test_simple_while(self):

    def test_fn(n):
      i = 0
      s = 0
      while i < n:
        s += i
        i += 1
      return s, i, n

    node = self.parse_and_analyze(test_fn, {}, namer=TestNamer())
    node = control_flow.transform(node, self.ctx)
    result = compiler.ast_to_object(node)
    setattr(result, 'tf', control_flow_ops)

    with self.test_session() as sess:
      self.assertEqual((10, 5, 5),
                       sess.run(result.test_fn(constant_op.constant(5))))
Exemple #15
0
    def test_simple_if(self):
        def test_fn(n):
            a = 0
            b = 0
            if n > 0:
                a = -n
            else:
                b = 2 * n
            return a, b

        node = self.parse_and_analyze(test_fn, {})
        node = control_flow.transform(node, self.ctx)

        with self.compiled(node, control_flow_ops.cond) as result:
            with self.test_session() as sess:
                self.assertEqual(
                    (-1, 0), sess.run(result.test_fn(constant_op.constant(1))))
                self.assertEqual(
                    (0, -2),
                    sess.run(result.test_fn(constant_op.constant(-1))))
  def test_simple_if(self):

    def test_fn(n):
      a = 0
      b = 0
      if n > 0:
        a = -n
      else:
        b = 2 * n
      return a, b

    node = self.parse_and_analyze(test_fn, {})
    node = control_flow.transform(node, self.ctx)

    with self.compiled(node, control_flow_ops.cond) as result:
      with self.test_session() as sess:
        self.assertEqual((-1, 0),
                         sess.run(result.test_fn(constant_op.constant(1))))
        self.assertEqual((0, -2),
                         sess.run(result.test_fn(constant_op.constant(-1))))
    def test_simple_if(self):
        def test_fn(n):
            a = 0
            b = 0
            if n > 0:
                a = -n
            else:
                b = 2 * n
            return a, b

        node = self.parse_and_analyze(test_fn, {})
        node = control_flow.transform(node, TestNamer())
        result = compiler.ast_to_object(node)
        setattr(result, 'tf', control_flow_ops)

        with self.test_session() as sess:
            self.assertEqual((-1, 0),
                             sess.run(result.test_fn(constant_op.constant(1))))
            self.assertEqual(
                (0, -2), sess.run(result.test_fn(constant_op.constant(-1))))
  def test_simple_if(self):

    def test_fn(n):
      a = 0
      b = 0
      if n > 0:
        a = -n
      else:
        b = 2 * n
      return a, b

    node = self.parse_and_analyze(test_fn, {}, namer=TestNamer())
    node = control_flow.transform(node, self.ctx)
    result = compiler.ast_to_object(node)
    setattr(result, 'tf', control_flow_ops)

    with self.test_session() as sess:
      self.assertEqual((-1, 0), sess.run(
          result.test_fn(constant_op.constant(1))))
      self.assertEqual((0, -2),
                       sess.run(result.test_fn(constant_op.constant(-1))))