def tf_inverse_stft(f): fc = tf.complex(*tf.unstack(f,axis=-1)) if window_fn_type is None: window_fn = None x = inverse_stft(fc,frame_length=frame_length,frame_step=frame_step,fft_length=fft_length,window_fn=window_fn) x *= frame_step/frame_length else: window_fn = inverse_stft_window_fn(frame_step,choose_window_fn(window_fn_type)) x = inverse_stft(fc,frame_length=frame_length,frame_step=frame_step,fft_length=fft_length,window_fn=window_fn) return x
def body(i, wave_list): # We need to reshape the outputs of the net. # It outputs tensor of size[frames, fft_bins, 1], whereas we want [1, frames, fft_bins] output = tf.squeeze(transform_list.read(i))[tf.newaxis, :, :] waveform = inverse_stft(output, frame_length, frame_step, fft_length) # Remember how we needed to transpose the raw audio before transforming it? # We need to do the same again, so that the audio can be encoded wave_list.write(i, tf.transpose(waveform)) return i + 1, wave_list
def _inverse_stft(self, stft): inversed = inverse_stft( tf.transpose(stft, perm=[2, 0, 1]), self._frame_length, self._frame_step, window_fn=lambda frame_length, dtype: ( hann_window(frame_length, periodic=True, dtype=dtype)) ) * self.WINDOW_COMPENSATION_FACTOR reshaped = tf.transpose(inversed) return reshaped[:tf.shape(self._features['waveform'])[0], :]
def _inverse_stft(self, stft_t, time_crop=None): """ Inverse and reshape the given STFT :param stft_t: input STFT :returns: inverse STFT (waveform) """ inversed = inverse_stft( tf.transpose(stft_t, perm=[2, 0, 1]), self._frame_length, self._frame_step, window_fn=lambda frame_length, dtype: (hann_window(frame_length, periodic=True, dtype=dtype) )) * self.WINDOW_COMPENSATION_FACTOR reshaped = tf.transpose(inversed) if time_crop is None: time_crop = tf.shape(self._features['waveform'])[0] return reshaped[:time_crop, :]
def _inverse_stft(self, stft_t, time_crop=None): """[Inverse and reshape the given STFT] Arguments: stft_t {[type]} -- [input STFT] Keyword Arguments: time_crop {[type]} -- [description] (default: {None}) Returns: [type] -- [inverse STFT (waveform)] """ inversed = inverse_stft( tf.transpose(stft_t, perm=[2, 0, 1]), self._frame_length, self._frame_step, window_fn=lambda frame_length, dtype: (hann_window(frame_length, periodic=True, dtype=dtype) )) * self.WINDOW_COMPENSATION_FACTOR reshaped = tf.transpose(inversed) if time_crop is None: time_crop = tf.shape(self._features['waveform'])[0] return reshaped[:time_crop, :]
new_shape = [old_shape[0] * old_shape[1], old_shape[2], old_shape[3]] X_mask = X_ext.reshape(new_shape) X_mask = X_mask[:stft_feature.shape[0], ...] X_mask = X_mask / (np.abs(stft_np) + EPSILON) new_stft = X_mask * stft_np new_stft[:, -n_extra_row:] = stft_np[:, -n_extra_row:] print(new_stft.shape, stft_np.shape) # inverse transform with predictor.graph.as_default(): print("inverse fft start") stft_ph = tf.placeholder(tf.complex64, new_stft.shape) inversed = inverse_stft( tf.transpose(stft_ph, perm=[2, 0, 1]), frame_length, frame_step, window_fn=lambda frame_length, dtype: (hann_window(frame_length, periodic=True, dtype=dtype) )) * WINDOW_COMPENSATION_FACTOR reshaped = tf.transpose(inversed) time_crop = waveform.shape[0] new_waveform = reshaped[:time_crop, :] print("inverse fft") new_waveform = predictor.session.run(new_waveform, {stft_ph: new_stft}) print("inferse fft finished") print("perturnation: {}".format(np.max(np.abs(new_waveform - waveform)))) d = new_waveform - waveform d *= d print("perturnation L2: {}".format(np.sqrt(np.average(d))))
def __init__( self, architecture, source_seq_len, target_seq_len, rnn_size, # hidden recurrent layer size num_layers, max_gradient_norm, batch_size, learning_rate, learning_rate_decay_factor, summaries_dir, loss_to_use, number_of_actions, one_hot=True, residual_velocities=False, dtype=tf.float32, custom_opt=False, cgru=True, fft=True, window_size=30, step_size=10, window_fun='hann', gaussian_scaling=False): """Create the model. Args: architecture: [basic, tied] whether to tie the decoder and decoder. source_seq_len: lenght of the input sequence. target_seq_len: lenght of the target sequence. rnn_size: number of units in the rnn. num_layers: number of rnns to stack. max_gradient_norm: gradients will be clipped to maximally this norm. batch_size: the size of the batches used during training; the model construction is independent of batch_size, so it can be changed after initialization if this is convenient, e.g., for decoding. learning_rate: learning rate to start with. learning_rate_decay_factor: decay learning rate by this much when needed. summaries_dir: where to log progress for tensorboard. loss_to_use: [supervised, sampling_based]. Whether to use ground truth in each timestep to compute the loss after decoding, or to feed back the prediction from the previous time-step. number_of_actions: number of classes we have. one_hot: whether to use one_hot encoding during train/test (sup models). residual_velocities: whether to use a residual connection that models velocities. dtype: the data type to use to store internal variables. """ if fft: assert cgru == True if custom_opt: assert cgru == True self.HUMAN_SIZE = 54 self.input_size = self.HUMAN_SIZE + number_of_actions if one_hot else self.HUMAN_SIZE print("One hot is ", one_hot) print("Input size is %d" % self.input_size) # Summary writers for train and test runs self.train_writer = tf.summary.FileWriter( os.path.normpath(os.path.join(summaries_dir, 'train'))) self.test_writer = tf.summary.FileWriter( os.path.normpath(os.path.join(summaries_dir, 'test'))) self.source_seq_len = source_seq_len self.target_seq_len = target_seq_len self.rnn_size = rnn_size self.batch_size = batch_size self.learning_rate = tf.Variable(float(learning_rate), trainable=False, dtype=dtype) self.learning_rate_decay_op = self.learning_rate.assign( self.learning_rate * learning_rate_decay_factor) self.global_step = tf.Variable(0, trainable=False) # === Transform the inputs === with tf.name_scope("inputs"): enc_in = tf.placeholder( dtype, shape=[None, source_seq_len - 1, self.input_size], name="enc_in") dec_in = tf.placeholder( dtype, shape=[None, target_seq_len, self.input_size], name="dec_in") dec_out = tf.placeholder( dtype, shape=[None, target_seq_len, self.input_size], name="dec_out") self.encoder_inputs = enc_in self.decoder_inputs = dec_in self.decoder_outputs = dec_out enc_in = tf.transpose(enc_in, [1, 0, 2]) dec_in = tf.transpose(dec_in, [1, 0, 2]) dec_out = tf.transpose(dec_out, [1, 0, 2]) enc_in = tf.reshape(enc_in, [-1, self.input_size]) dec_in = tf.reshape(dec_in, [-1, self.input_size]) dec_out = tf.reshape(dec_out, [-1, self.input_size]) enc_in = tf.split(enc_in, source_seq_len - 1, axis=0) dec_in = tf.split(dec_in, target_seq_len, axis=0) dec_out = tf.split(dec_out, target_seq_len, axis=0) if fft: assert cgru == True # if true do centering to avoid boundary problems. center = True if center: pad_enc_in = tf.stack(enc_in, axis=-1) pad_amount = 2 * (window_size - step_size) print('padding with', [pad_amount // 2, pad_amount // 2]) # debug_here() pad_enc_in = tf.pad( pad_enc_in, [[0, 0], [0, 0], [pad_amount // 2, pad_amount // 2]], 'REFLECT') else: pad_enc_in = tf.stack(enc_in, axis=-1) # transform input and output. if window_fun == 'hann': w = functools.partial(tf.contrib.signal.hann_window, periodic=True) elif window_fun == 'hamming': w = functools.partial(tf.contrib.signal.hamming_window, periodic=True) elif window_fun == 'None': w = None else: raise ValueError("unknown window function.") fft_enc_in = tfsignal.stft(pad_enc_in, window_size, step_size, window_fn=w) print('fft_enc_in.shape', fft_enc_in.shape) batch_size = tf.shape(fft_enc_in)[0] freq_tensor_shape = fft_enc_in.get_shape().as_list() frames_in = freq_tensor_shape[2] fft_dim_in = freq_tensor_shape[1] * freq_tensor_shape[-1] fft_enc_in = tf.transpose(fft_enc_in, [0, 2, 1, 3]) fft_enc_in = tf.reshape(fft_enc_in, [batch_size, frames_in, fft_dim_in], name='fft_enc_in_reshape') fft_enc_in = tf.unstack(fft_enc_in, axis=1) if center is True: pad_dec_in = tf.stack(dec_in, axis=-1) pad_dec_in = tf.pad( pad_dec_in, [[0, 0], [0, 0], [pad_amount // 2, pad_amount // 2]], 'REFLECT') else: pad_dec_in = tf.stack(dec_in, axis=-1) fft_dec_in = tfsignal.stft(pad_dec_in, window_size, step_size, window_fn=w) print('fft_dec_in.shape', fft_dec_in.shape) batch_size = tf.shape(fft_dec_in)[0] freq_tensor_shape = fft_dec_in.get_shape().as_list() frames_dec = freq_tensor_shape[2] fft_unique_bins_dec = freq_tensor_shape[3] assert self.input_size == freq_tensor_shape[1] fft_dim_out = self.input_size * fft_unique_bins_dec fft_dec_in = tf.transpose(fft_dec_in, [0, 2, 1, 3]) fft_dec_in = tf.reshape(fft_dec_in, [batch_size, frames_dec, fft_dim_out], name='fft_dec_in_reshape') fft_dec_in = tf.unstack(fft_dec_in, axis=1) enc_in = fft_enc_in dec_in = fft_dec_in assert fft_dim_in == fft_dim_out # === Create the RNN that will keep the state === print('rnn_size = {0}'.format(rnn_size)) if cgru: if not fft: cell = rnn_cell_extensions.ComplexGatedRecurrentUnit( self.rnn_size) else: # num_proj = self.input_size * (window_size//2+1) cell = rnn_cell_extensions.ComplexGatedRecurrentUnit( self.rnn_size, complex_out=fft, num_proj=fft_dim_in) print(cell.to_string()) else: cell = tf.contrib.rnn.GRUCell(self.rnn_size) if num_layers > 1: cell = tf.contrib.rnn.MultiRNNCell([ tf.contrib.rnn.GRUCell(self.rnn_size) for _ in range(num_layers) ]) # === Add space decoder === if not fft: cell = rnn_cell_extensions.LinearSpaceDecoderWrapper( cell, self.input_size) # Finally, wrap everything in a residual layer if we want to model velocities if residual_velocities: assert fft is False print('using resudial_velocities') cell = rnn_cell_extensions.ResidualWrapper(cell) # Store the outputs here outputs = [] # Define the loss function lf = None if loss_to_use == "sampling_based": def lf(prev, i): # function for sampling_based loss return prev elif loss_to_use == "supervised": pass else: raise (ValueError, "unknown loss: %s" % loss_to_use) # Build the RNN if architecture == "basic": # Basic RNN does not have a loop function in its API, so copying here. with vs.variable_scope("basic_rnn_seq2seq"): _, enc_state = tf.contrib.rnn.static_rnn( cell, enc_in, dtype=tf.float32) # Encoder outputs, self.states = tf.contrib.legacy_seq2seq.rnn_decoder( dec_in, enc_state, cell, loop_function=lf) # Decoder elif architecture == "tied": outputs, self.states = tf.contrib.legacy_seq2seq.tied_rnn_seq2seq( enc_in, dec_in, cell, loop_function=lf) else: raise (ValueError, "Unknown architecture: %s" % architecture) if fft: # compute the inverse fft on the outputs and restore the shape. spec_out = tf.reshape(tf.stack(outputs, -1), [ batch_size, self.input_size, fft_unique_bins_dec, len(outputs) ]) spec_out = tf.transpose(spec_out, [0, 1, 3, 2]) if w: iw = tf.contrib.signal.inverse_stft_window_fn( step_size, forward_window_fn=w) else: iw = None outputs = tfsignal.inverse_stft(spec_out, window_size, step_size, window_fn=iw) if center and pad_amount > 0: outputs = outputs[:, :, pad_amount // 2:-pad_amount // 2] outputs.set_shape([None, self.input_size, target_seq_len]) outputs = tf.unstack(outputs, axis=-1, name='result_unstack') self.outputs = outputs with tf.name_scope("loss_angles"): loss_angles = tf.reduce_mean( tf.square(tf.subtract(dec_out, outputs))) self.loss = loss_angles self.loss_summary = tf.summary.scalar('loss/loss', self.loss) # Gradients and SGD update operation for training the model. params = tf.trainable_variables() # Original algorithm. if custom_opt: # Wisdoms modification. opt = RMSpropNatGrad(self.learning_rate, global_step=self.global_step) else: opt = tf.train.GradientDescentOptimizer(self.learning_rate) # Update all the trainable parameters gradients = tf.gradients(self.loss, params) clipped_gradients, norm = tf.clip_by_global_norm( gradients, max_gradient_norm) self.gradient_norms = norm self.updates = opt.apply_gradients(zip(clipped_gradients, params), global_step=self.global_step) # Keep track of the learning rate self.learning_rate_summary = tf.summary.scalar( 'learning_rate/learning_rate', self.learning_rate) # === variables for loss in Euler Angles -- for each action with tf.name_scope("euler_error_walking"): self.walking_err80 = tf.placeholder(tf.float32, name="walking_srnn_seeds_0080") self.walking_err160 = tf.placeholder( tf.float32, name="walking_srnn_seeds_0160") self.walking_err320 = tf.placeholder( tf.float32, name="walking_srnn_seeds_0320") self.walking_err400 = tf.placeholder( tf.float32, name="walking_srnn_seeds_0400") self.walking_err560 = tf.placeholder( tf.float32, name="walking_srnn_seeds_0560") self.walking_err1000 = tf.placeholder( tf.float32, name="walking_srnn_seeds_1000") self.walking_err80_summary = tf.summary.scalar( 'euler_error_walking/srnn_seeds_0080', self.walking_err80) self.walking_err160_summary = tf.summary.scalar( 'euler_error_walking/srnn_seeds_0160', self.walking_err160) self.walking_err320_summary = tf.summary.scalar( 'euler_error_walking/srnn_seeds_0320', self.walking_err320) self.walking_err400_summary = tf.summary.scalar( 'euler_error_walking/srnn_seeds_0400', self.walking_err400) self.walking_err560_summary = tf.summary.scalar( 'euler_error_walking/srnn_seeds_0560', self.walking_err560) self.walking_err1000_summary = tf.summary.scalar( 'euler_error_walking/srnn_seeds_1000', self.walking_err1000) with tf.name_scope("euler_error_eating"): self.eating_err80 = tf.placeholder(tf.float32, name="eating_srnn_seeds_0080") self.eating_err160 = tf.placeholder(tf.float32, name="eating_srnn_seeds_0160") self.eating_err320 = tf.placeholder(tf.float32, name="eating_srnn_seeds_0320") self.eating_err400 = tf.placeholder(tf.float32, name="eating_srnn_seeds_0400") self.eating_err560 = tf.placeholder(tf.float32, name="eating_srnn_seeds_0560") self.eating_err1000 = tf.placeholder(tf.float32, name="eating_srnn_seeds_1000") self.eating_err80_summary = tf.summary.scalar( 'euler_error_eating/srnn_seeds_0080', self.eating_err80) self.eating_err160_summary = tf.summary.scalar( 'euler_error_eating/srnn_seeds_0160', self.eating_err160) self.eating_err320_summary = tf.summary.scalar( 'euler_error_eating/srnn_seeds_0320', self.eating_err320) self.eating_err400_summary = tf.summary.scalar( 'euler_error_eating/srnn_seeds_0400', self.eating_err400) self.eating_err560_summary = tf.summary.scalar( 'euler_error_eating/srnn_seeds_0560', self.eating_err560) self.eating_err1000_summary = tf.summary.scalar( 'euler_error_eating/srnn_seeds_1000', self.eating_err1000) with tf.name_scope("euler_error_smoking"): self.smoking_err80 = tf.placeholder(tf.float32, name="smoking_srnn_seeds_0080") self.smoking_err160 = tf.placeholder( tf.float32, name="smoking_srnn_seeds_0160") self.smoking_err320 = tf.placeholder( tf.float32, name="smoking_srnn_seeds_0320") self.smoking_err400 = tf.placeholder( tf.float32, name="smoking_srnn_seeds_0400") self.smoking_err560 = tf.placeholder( tf.float32, name="smoking_srnn_seeds_0560") self.smoking_err1000 = tf.placeholder( tf.float32, name="smoking_srnn_seeds_1000") self.smoking_err80_summary = tf.summary.scalar( 'euler_error_smoking/srnn_seeds_0080', self.smoking_err80) self.smoking_err160_summary = tf.summary.scalar( 'euler_error_smoking/srnn_seeds_0160', self.smoking_err160) self.smoking_err320_summary = tf.summary.scalar( 'euler_error_smoking/srnn_seeds_0320', self.smoking_err320) self.smoking_err400_summary = tf.summary.scalar( 'euler_error_smoking/srnn_seeds_0400', self.smoking_err400) self.smoking_err560_summary = tf.summary.scalar( 'euler_error_smoking/srnn_seeds_0560', self.smoking_err560) self.smoking_err1000_summary = tf.summary.scalar( 'euler_error_smoking/srnn_seeds_1000', self.smoking_err1000) with tf.name_scope("euler_error_discussion"): self.discussion_err80 = tf.placeholder( tf.float32, name="discussion_srnn_seeds_0080") self.discussion_err160 = tf.placeholder( tf.float32, name="discussion_srnn_seeds_0160") self.discussion_err320 = tf.placeholder( tf.float32, name="discussion_srnn_seeds_0320") self.discussion_err400 = tf.placeholder( tf.float32, name="discussion_srnn_seeds_0400") self.discussion_err560 = tf.placeholder( tf.float32, name="discussion_srnn_seeds_0560") self.discussion_err1000 = tf.placeholder( tf.float32, name="discussion_srnn_seeds_1000") self.discussion_err80_summary = tf.summary.scalar( 'euler_error_discussion/srnn_seeds_0080', self.discussion_err80) self.discussion_err160_summary = tf.summary.scalar( 'euler_error_discussion/srnn_seeds_0160', self.discussion_err160) self.discussion_err320_summary = tf.summary.scalar( 'euler_error_discussion/srnn_seeds_0320', self.discussion_err320) self.discussion_err400_summary = tf.summary.scalar( 'euler_error_discussion/srnn_seeds_0400', self.discussion_err400) self.discussion_err560_summary = tf.summary.scalar( 'euler_error_discussion/srnn_seeds_0560', self.discussion_err560) self.discussion_err1000_summary = tf.summary.scalar( 'euler_error_discussion/srnn_seeds_1000', self.discussion_err1000) with tf.name_scope("euler_error_directions"): self.directions_err80 = tf.placeholder( tf.float32, name="directions_srnn_seeds_0080") self.directions_err160 = tf.placeholder( tf.float32, name="directions_srnn_seeds_0160") self.directions_err320 = tf.placeholder( tf.float32, name="directions_srnn_seeds_0320") self.directions_err400 = tf.placeholder( tf.float32, name="directions_srnn_seeds_0400") self.directions_err560 = tf.placeholder( tf.float32, name="directions_srnn_seeds_0560") self.directions_err1000 = tf.placeholder( tf.float32, name="directions_srnn_seeds_1000") self.directions_err80_summary = tf.summary.scalar( 'euler_error_directions/srnn_seeds_0080', self.directions_err80) self.directions_err160_summary = tf.summary.scalar( 'euler_error_directions/srnn_seeds_0160', self.directions_err160) self.directions_err320_summary = tf.summary.scalar( 'euler_error_directions/srnn_seeds_0320', self.directions_err320) self.directions_err400_summary = tf.summary.scalar( 'euler_error_directions/srnn_seeds_0400', self.directions_err400) self.directions_err560_summary = tf.summary.scalar( 'euler_error_directions/srnn_seeds_0560', self.directions_err560) self.directions_err1000_summary = tf.summary.scalar( 'euler_error_directions/srnn_seeds_1000', self.directions_err1000) with tf.name_scope("euler_error_greeting"): self.greeting_err80 = tf.placeholder( tf.float32, name="greeting_srnn_seeds_0080") self.greeting_err160 = tf.placeholder( tf.float32, name="greeting_srnn_seeds_0160") self.greeting_err320 = tf.placeholder( tf.float32, name="greeting_srnn_seeds_0320") self.greeting_err400 = tf.placeholder( tf.float32, name="greeting_srnn_seeds_0400") self.greeting_err560 = tf.placeholder( tf.float32, name="greeting_srnn_seeds_0560") self.greeting_err1000 = tf.placeholder( tf.float32, name="greeting_srnn_seeds_1000") self.greeting_err80_summary = tf.summary.scalar( 'euler_error_greeting/srnn_seeds_0080', self.greeting_err80) self.greeting_err160_summary = tf.summary.scalar( 'euler_error_greeting/srnn_seeds_0160', self.greeting_err160) self.greeting_err320_summary = tf.summary.scalar( 'euler_error_greeting/srnn_seeds_0320', self.greeting_err320) self.greeting_err400_summary = tf.summary.scalar( 'euler_error_greeting/srnn_seeds_0400', self.greeting_err400) self.greeting_err560_summary = tf.summary.scalar( 'euler_error_greeting/srnn_seeds_0560', self.greeting_err560) self.greeting_err1000_summary = tf.summary.scalar( 'euler_error_greeting/srnn_seeds_1000', self.greeting_err1000) with tf.name_scope("euler_error_phoning"): self.phoning_err80 = tf.placeholder(tf.float32, name="phoning_srnn_seeds_0080") self.phoning_err160 = tf.placeholder( tf.float32, name="phoning_srnn_seeds_0160") self.phoning_err320 = tf.placeholder( tf.float32, name="phoning_srnn_seeds_0320") self.phoning_err400 = tf.placeholder( tf.float32, name="phoning_srnn_seeds_0400") self.phoning_err560 = tf.placeholder( tf.float32, name="phoning_srnn_seeds_0560") self.phoning_err1000 = tf.placeholder( tf.float32, name="phoning_srnn_seeds_1000") self.phoning_err80_summary = tf.summary.scalar( 'euler_error_phoning/srnn_seeds_0080', self.phoning_err80) self.phoning_err160_summary = tf.summary.scalar( 'euler_error_phoning/srnn_seeds_0160', self.phoning_err160) self.phoning_err320_summary = tf.summary.scalar( 'euler_error_phoning/srnn_seeds_0320', self.phoning_err320) self.phoning_err400_summary = tf.summary.scalar( 'euler_error_phoning/srnn_seeds_0400', self.phoning_err400) self.phoning_err560_summary = tf.summary.scalar( 'euler_error_phoning/srnn_seeds_0560', self.phoning_err560) self.phoning_err1000_summary = tf.summary.scalar( 'euler_error_phoning/srnn_seeds_1000', self.phoning_err1000) with tf.name_scope("euler_error_posing"): self.posing_err80 = tf.placeholder(tf.float32, name="posing_srnn_seeds_0080") self.posing_err160 = tf.placeholder(tf.float32, name="posing_srnn_seeds_0160") self.posing_err320 = tf.placeholder(tf.float32, name="posing_srnn_seeds_0320") self.posing_err400 = tf.placeholder(tf.float32, name="posing_srnn_seeds_0400") self.posing_err560 = tf.placeholder(tf.float32, name="posing_srnn_seeds_0560") self.posing_err1000 = tf.placeholder(tf.float32, name="posing_srnn_seeds_1000") self.posing_err80_summary = tf.summary.scalar( 'euler_error_posing/srnn_seeds_0080', self.posing_err80) self.posing_err160_summary = tf.summary.scalar( 'euler_error_posing/srnn_seeds_0160', self.posing_err160) self.posing_err320_summary = tf.summary.scalar( 'euler_error_posing/srnn_seeds_0320', self.posing_err320) self.posing_err400_summary = tf.summary.scalar( 'euler_error_posing/srnn_seeds_0400', self.posing_err400) self.posing_err560_summary = tf.summary.scalar( 'euler_error_posing/srnn_seeds_0560', self.posing_err560) self.posing_err1000_summary = tf.summary.scalar( 'euler_error_posing/srnn_seeds_1000', self.posing_err1000) with tf.name_scope("euler_error_purchases"): self.purchases_err80 = tf.placeholder( tf.float32, name="purchases_srnn_seeds_0080") self.purchases_err160 = tf.placeholder( tf.float32, name="purchases_srnn_seeds_0160") self.purchases_err320 = tf.placeholder( tf.float32, name="purchases_srnn_seeds_0320") self.purchases_err400 = tf.placeholder( tf.float32, name="purchases_srnn_seeds_0400") self.purchases_err560 = tf.placeholder( tf.float32, name="purchases_srnn_seeds_0560") self.purchases_err1000 = tf.placeholder( tf.float32, name="purchases_srnn_seeds_1000") self.purchases_err80_summary = tf.summary.scalar( 'euler_error_purchases/srnn_seeds_0080', self.purchases_err80) self.purchases_err160_summary = tf.summary.scalar( 'euler_error_purchases/srnn_seeds_0160', self.purchases_err160) self.purchases_err320_summary = tf.summary.scalar( 'euler_error_purchases/srnn_seeds_0320', self.purchases_err320) self.purchases_err400_summary = tf.summary.scalar( 'euler_error_purchases/srnn_seeds_0400', self.purchases_err400) self.purchases_err560_summary = tf.summary.scalar( 'euler_error_purchases/srnn_seeds_0560', self.purchases_err560) self.purchases_err1000_summary = tf.summary.scalar( 'euler_error_purchases/srnn_seeds_1000', self.purchases_err1000) with tf.name_scope("euler_error_sitting"): self.sitting_err80 = tf.placeholder(tf.float32, name="sitting_srnn_seeds_0080") self.sitting_err160 = tf.placeholder( tf.float32, name="sitting_srnn_seeds_0160") self.sitting_err320 = tf.placeholder( tf.float32, name="sitting_srnn_seeds_0320") self.sitting_err400 = tf.placeholder( tf.float32, name="sitting_srnn_seeds_0400") self.sitting_err560 = tf.placeholder( tf.float32, name="sitting_srnn_seeds_0560") self.sitting_err1000 = tf.placeholder( tf.float32, name="sitting_srnn_seeds_1000") self.sitting_err80_summary = tf.summary.scalar( 'euler_error_sitting/srnn_seeds_0080', self.sitting_err80) self.sitting_err160_summary = tf.summary.scalar( 'euler_error_sitting/srnn_seeds_0160', self.sitting_err160) self.sitting_err320_summary = tf.summary.scalar( 'euler_error_sitting/srnn_seeds_0320', self.sitting_err320) self.sitting_err400_summary = tf.summary.scalar( 'euler_error_sitting/srnn_seeds_0400', self.sitting_err400) self.sitting_err560_summary = tf.summary.scalar( 'euler_error_sitting/srnn_seeds_0560', self.sitting_err560) self.sitting_err1000_summary = tf.summary.scalar( 'euler_error_sitting/srnn_seeds_1000', self.sitting_err1000) with tf.name_scope("euler_error_sittingdown"): self.sittingdown_err80 = tf.placeholder( tf.float32, name="sittingdown_srnn_seeds_0080") self.sittingdown_err160 = tf.placeholder( tf.float32, name="sittingdown_srnn_seeds_0160") self.sittingdown_err320 = tf.placeholder( tf.float32, name="sittingdown_srnn_seeds_0320") self.sittingdown_err400 = tf.placeholder( tf.float32, name="sittingdown_srnn_seeds_0400") self.sittingdown_err560 = tf.placeholder( tf.float32, name="sittingdown_srnn_seeds_0560") self.sittingdown_err1000 = tf.placeholder( tf.float32, name="sittingdown_srnn_seeds_1000") self.sittingdown_err80_summary = tf.summary.scalar( 'euler_error_sittingdown/srnn_seeds_0080', self.sittingdown_err80) self.sittingdown_err160_summary = tf.summary.scalar( 'euler_error_sittingdown/srnn_seeds_0160', self.sittingdown_err160) self.sittingdown_err320_summary = tf.summary.scalar( 'euler_error_sittingdown/srnn_seeds_0320', self.sittingdown_err320) self.sittingdown_err400_summary = tf.summary.scalar( 'euler_error_sittingdown/srnn_seeds_0400', self.sittingdown_err400) self.sittingdown_err560_summary = tf.summary.scalar( 'euler_error_sittingdown/srnn_seeds_0560', self.sittingdown_err560) self.sittingdown_err1000_summary = tf.summary.scalar( 'euler_error_sittingdown/srnn_seeds_1000', self.sittingdown_err1000) with tf.name_scope("euler_error_takingphoto"): self.takingphoto_err80 = tf.placeholder( tf.float32, name="takingphoto_srnn_seeds_0080") self.takingphoto_err160 = tf.placeholder( tf.float32, name="takingphoto_srnn_seeds_0160") self.takingphoto_err320 = tf.placeholder( tf.float32, name="takingphoto_srnn_seeds_0320") self.takingphoto_err400 = tf.placeholder( tf.float32, name="takingphoto_srnn_seeds_0400") self.takingphoto_err560 = tf.placeholder( tf.float32, name="takingphoto_srnn_seeds_0560") self.takingphoto_err1000 = tf.placeholder( tf.float32, name="takingphoto_srnn_seeds_1000") self.takingphoto_err80_summary = tf.summary.scalar( 'euler_error_takingphoto/srnn_seeds_0080', self.takingphoto_err80) self.takingphoto_err160_summary = tf.summary.scalar( 'euler_error_takingphoto/srnn_seeds_0160', self.takingphoto_err160) self.takingphoto_err320_summary = tf.summary.scalar( 'euler_error_takingphoto/srnn_seeds_0320', self.takingphoto_err320) self.takingphoto_err400_summary = tf.summary.scalar( 'euler_error_takingphoto/srnn_seeds_0400', self.takingphoto_err400) self.takingphoto_err560_summary = tf.summary.scalar( 'euler_error_takingphoto/srnn_seeds_0560', self.takingphoto_err560) self.takingphoto_err1000_summary = tf.summary.scalar( 'euler_error_takingphoto/srnn_seeds_1000', self.takingphoto_err1000) with tf.name_scope("euler_error_waiting"): self.waiting_err80 = tf.placeholder(tf.float32, name="waiting_srnn_seeds_0080") self.waiting_err160 = tf.placeholder( tf.float32, name="waiting_srnn_seeds_0160") self.waiting_err320 = tf.placeholder( tf.float32, name="waiting_srnn_seeds_0320") self.waiting_err400 = tf.placeholder( tf.float32, name="waiting_srnn_seeds_0400") self.waiting_err560 = tf.placeholder( tf.float32, name="waiting_srnn_seeds_0560") self.waiting_err1000 = tf.placeholder( tf.float32, name="waiting_srnn_seeds_1000") self.waiting_err80_summary = tf.summary.scalar( 'euler_error_waiting/srnn_seeds_0080', self.waiting_err80) self.waiting_err160_summary = tf.summary.scalar( 'euler_error_waiting/srnn_seeds_0160', self.waiting_err160) self.waiting_err320_summary = tf.summary.scalar( 'euler_error_waiting/srnn_seeds_0320', self.waiting_err320) self.waiting_err400_summary = tf.summary.scalar( 'euler_error_waiting/srnn_seeds_0400', self.waiting_err400) self.waiting_err560_summary = tf.summary.scalar( 'euler_error_waiting/srnn_seeds_0560', self.waiting_err560) self.waiting_err1000_summary = tf.summary.scalar( 'euler_error_waiting/srnn_seeds_1000', self.waiting_err1000) with tf.name_scope("euler_error_walkingdog"): self.walkingdog_err80 = tf.placeholder( tf.float32, name="walkingdog_srnn_seeds_0080") self.walkingdog_err160 = tf.placeholder( tf.float32, name="walkingdog_srnn_seeds_0160") self.walkingdog_err320 = tf.placeholder( tf.float32, name="walkingdog_srnn_seeds_0320") self.walkingdog_err400 = tf.placeholder( tf.float32, name="walkingdog_srnn_seeds_0400") self.walkingdog_err560 = tf.placeholder( tf.float32, name="walkingdog_srnn_seeds_0560") self.walkingdog_err1000 = tf.placeholder( tf.float32, name="walkingdog_srnn_seeds_1000") self.walkingdog_err80_summary = tf.summary.scalar( 'euler_error_walkingdog/srnn_seeds_0080', self.walkingdog_err80) self.walkingdog_err160_summary = tf.summary.scalar( 'euler_error_walkingdog/srnn_seeds_0160', self.walkingdog_err160) self.walkingdog_err320_summary = tf.summary.scalar( 'euler_error_walkingdog/srnn_seeds_0320', self.walkingdog_err320) self.walkingdog_err400_summary = tf.summary.scalar( 'euler_error_walkingdog/srnn_seeds_0400', self.walkingdog_err400) self.walkingdog_err560_summary = tf.summary.scalar( 'euler_error_walkingdog/srnn_seeds_0560', self.walkingdog_err560) self.walkingdog_err1000_summary = tf.summary.scalar( 'euler_error_walkingdog/srnn_seeds_1000', self.walkingdog_err1000) with tf.name_scope("euler_error_walkingtogether"): self.walkingtogether_err80 = tf.placeholder( tf.float32, name="walkingtogether_srnn_seeds_0080") self.walkingtogether_err160 = tf.placeholder( tf.float32, name="walkingtogether_srnn_seeds_0160") self.walkingtogether_err320 = tf.placeholder( tf.float32, name="walkingtogether_srnn_seeds_0320") self.walkingtogether_err400 = tf.placeholder( tf.float32, name="walkingtogether_srnn_seeds_0400") self.walkingtogether_err560 = tf.placeholder( tf.float32, name="walkingtogether_srnn_seeds_0560") self.walkingtogether_err1000 = tf.placeholder( tf.float32, name="walkingtogether_srnn_seeds_1000") self.walkingtogether_err80_summary = tf.summary.scalar( 'euler_error_walkingtogether/srnn_seeds_0080', self.walkingtogether_err80) self.walkingtogether_err160_summary = tf.summary.scalar( 'euler_error_walkingtogether/srnn_seeds_0160', self.walkingtogether_err160) self.walkingtogether_err320_summary = tf.summary.scalar( 'euler_error_walkingtogether/srnn_seeds_0320', self.walkingtogether_err320) self.walkingtogether_err400_summary = tf.summary.scalar( 'euler_error_walkingtogether/srnn_seeds_0400', self.walkingtogether_err400) self.walkingtogether_err560_summary = tf.summary.scalar( 'euler_error_walkingtogether/srnn_seeds_0560', self.walkingtogether_err560) self.walkingtogether_err1000_summary = tf.summary.scalar( 'euler_error_walkingtogether/srnn_seeds_1000', self.walkingtogether_err1000) self.saver = tf.train.Saver(tf.global_variables(), max_to_keep=10)
def istft(self): return signal.inverse_stft(self.ft, self.fft_len, self.fft_len // 2, window_fn=signal.hamming_window)