def __init__(self, params, tree_num, training, tree_config='', tree_stat=''):
    if (not hasattr(params, 'params_proto') or
        not isinstance(params.params_proto, _params_proto.TensorForestParams)):
      params.params_proto = build_params_proto(params)

    params.serialized_params_proto = params.params_proto.SerializeToString()
    self.stats = None
    if training:
      # TODO(gilberth): Manually shard this to be able to fit it on
      # multiple machines.
      self.stats = stats_ops.fertile_stats_variable(
          params, tree_stat, self.get_tree_name('stats', tree_num))
    self.tree = model_ops.tree_variable(params, tree_config, self.stats,
                                        self.get_tree_name('tree', tree_num))
Exemple #2
0
    def __init__(self, params, tree_num, training):
        if (not hasattr(params, 'params_proto') or not isinstance(
                params.params_proto, _params_proto.TensorForestParams)):
            params.params_proto = build_params_proto(params)

        params.serialized_params_proto = params.params_proto.SerializeToString(
        )
        self.stats = None
        if training:
            # TODO(gilberth): Manually shard this to be able to fit it on
            # multiple machines.
            self.stats = stats_ops.fertile_stats_variable(
                params, '', self.get_tree_name('stats', tree_num))
        self.tree = model_ops.tree_variable(
            params, '', self.stats, self.get_tree_name('tree', tree_num))