Exemple #1
0
def predict_image():
    #file = request.files['image']
    #filename = os.path.join('selected', file.filename)

    #file.save(filename)

    # Load the VGG19 model
    # https://keras.io/applications/#VGG19
    model = Xception(include_top=True, weights='imagenet')

    # Define default image size for VGG19
    image_size = (299, 299)

    # initialize the response dictionary that will be returned
    message = request.get_json(force=True)
    encoded = message['image']
    decoded = base64.b64decode(encoded)
    img = Image.open(io.BytesIO(decoded))

    # if the image mode is not RGB, convert it
    if img.mode != "RGB":
        img = img.convert("RGB")

    # resize the input image and preprocess it
    img = img.resize(image_size)

    # Preprocess image for model prediction
    # This step handles scaling and normalization for VGG19
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)

    # Make predictions
    predictions = model.predict(x)
    prediction = decode_predictions(predictions, top=1)
    print('Predicted:', decode_predictions(predictions, top=3))

    response = {
        'predictions': {
            'label': np.array(prediction[0][0][1]).tolist(),
            'probability': np.array(prediction[0][0][2]).tolist()
        }
    }

    print(response)

    # return the response dictionary as a JSON response
    return jsonify(response)
Exemple #2
0
def predict():
    # initialize the data dictionary that will be returned from the
    # view
    data = {"success": False}

    # ensure an image was properly uploaded to our endpoint
    if flask.request.method == "POST":
        if flask.request.files.get("image"):
            # read the image in PIL format
            image = flask.request.files["image"].read()
            image = Image.open(io.BytesIO(image))

            # preprocess the image and prepare it for classification
            image = prepare_image(image)

            # make prediction
            predictions = model.predict(np.array([image]))
            results = xception.decode_predictions(predictions, top=5)

            # build result
            data["predictions"] = []
            for (_, label, prob) in results[0]:
                r = {"label": label, "probability": float(prob)}
                data["predictions"].append(r)

            data["success"] = True

    # return the data dictionary as a JSON response
    return flask.jsonify(data)
Exemple #3
0
    def process(self):
        model = tf.keras.applications.Xception(
            include_top=True,
            weights="imagenet",
            input_tensor=None,
            input_shape=None,
            pooling=None,
            classes=1000,
            )
        image_list = []
        # Go through data folder and find all .jpeg(s) and put into a list
        for filename in glob.glob(self.path):
            image_list.append(filename)
        # From list of images, go through all and do classification for each
        for images in image_list:
            img=tf.keras.preprocessing.image.load_img(images,target_size=(299,299))
            img=tf.keras.preprocessing.image.img_to_array(img)

            response=requests.get('https://storage.googleapis.com/download.tensorflow.org/data/imagenet_class_index.json')
            imgnet_map=response.json()

            img=tf.keras.applications.xception.preprocess_input(img)
            predictions = model.predict(np.array([img]))
            # Make predictions (top 3) - Only care about top on decode[0][0][1], second decode[0][1][1]
            decode = decode_predictions(predictions,top=3)

            start = "\033[1m" # For Bold setting (before)
            end = "\033[0;0m" # For Bold setting (after)
            print('Prediction of : ' + start + '{0}'.format(decode[0][0][1]) + end + ' for image : ' + start + '{0}'.format(images.strip(self.path)) + end + ' with confidence : ' + start + '{0}'.format(decode[0][0][2]) + end)
Exemple #4
0
def create_plot():
    img = ImgResult()
    # print(img)
    preds = prepare_model(img, model)

    pclass = decode_predictions(preds, top=4)
    #test prediction

    # plot prediction
    a_one = pclass[0][0][1]
    a_two = pclass[0][1][1]
    a_three = pclass[0][2][1]
    a_four = pclass[0][3][1]
    one = pclass[0][0][2]
    two = pclass[0][1][2]
    three = pclass[0][2][2]
    four = pclass[0][3][2]
    # print(a_one, a_two, a_three, a_four)
    animals = [a_one, a_two, a_three, a_four]
    probs = [one, two, three, four]
    dfs = pd.DataFrame({'Breed': animals, 'Percentage': probs})
    jsons = dfs.to_json(orient="records")
    jsons = json.loads(jsons)
    jsons = json.dumps(jsons, indent=4)
    print(dfs)
    return jsons
    def prediction(self, update, context):
        """
        Prediction method that using pre-trained on ImageNet dataset
        Xception model for recognizing sent user's picture
        returns PICTURE that means switch to picture() method
        you can infinitely send images to bot until you print /cancel 
        or kill bot process by
        """

        id = str(update.message.from_user.id)
        img = image.load_img('userID_{}_photo.jpg'.format(id),
                             target_size=(299, 299))

        update.message.reply_text('[INFO] Preprocessing...')
        x = image.img_to_array(img)
        x = np.expand_dims(x, axis=0)
        x = preprocess_input(x)

        update.message.reply_text('[INFO] Recognizing...')
        model = Xception()
        preds = model.predict(x)

        decoded_preds = decode_predictions(preds, top=1)[0][0]

        update.message.reply_text('Predicted: {} with {:.2f}% accuracy'.format(
            decoded_preds[1], decoded_preds[2] * 100))

        update.message.reply_text(
            'Send me another image or /cancel for stop conversation')

        return self.PICTURE
Exemple #6
0
def pp():
    file = request.files['file']
    if file and allowed_file(file.filename):
        filename = secure_filename(file.filename)
        filename2 = random.choices(string.ascii_uppercase + string.digits,
                                   k=13)
        filename2 = ''.join(filename2)

        actual_file_path = os.path.join(upP, filename2)
        file.save(os.path.join(upP, filename2))

        img_path = os.path.join(upP, filename2)
        img = image.load_img(img_path, target_size=(229, 229))
        x = image.img_to_array(img)
        x = np.expand_dims(x, axis=0)
        x = preprocess_input(x)
        preds = model.predict(x)

        os.remove(os.path.join(upP, filename2))
        predictions = decode_predictions(preds, top=2)[0]
        arr = []
        for i in range(2):
            arr.append(predictions[i][1])

        return ','.join(arr)
 def model_predict(self,image_path):
     img = image.load_img(image_path, target_size=(299,299))
     x = image.img_to_array(img)
     x = np.expand_dims(x, axis=0)
     x = preprocess_input(x)
     predictions = self.model.predict(x)
     pred=decode_predictions(predictions, top=3)
     return ','.join([item[1] for item in pred[0]])
def get_predictions(image):
    cur_img = tf.keras.preprocessing.image.img_to_array(image)
    cur_img = tf.keras.preprocessing.image.smart_resize(
        cur_img, (299, 299), interpolation='bilinear')
    processed_img = tf.keras.applications.xception.preprocess_input(cur_img)

    cur_predictions = image_net_model.predict(np.array([processed_img]))
    imagenet_label = decode_predictions(cur_predictions, top=1)[0][0][1]
    pre_final_predictions = pre_final_model.predict(np.array([processed_img]))
    return pre_final_predictions, imagenet_label
Exemple #9
0
def export_keras_model():
    if not os.path.exists(KERAS_MODEL_PATH):
        model = Xception(weights='imagenet')

        img = image.load_img(IMG_PATH, target_size=(299, 299))
        x = image.img_to_array(img)
        x = np.expand_dims(x, axis=0)
        x = preprocess_input(x)

        preds = model.predict(x)
        #preds.tofile('out_0.txt', '\n')
        print('Keras Predicted:', decode_predictions(preds, top=5)[0])

        model.save(KERAS_MODEL_PATH)
def model_predict(img_path, model):
    # Preprocessing the image
    image = Image.open(img_path).convert('RGB')
    size = (299, 299)
    image = ImageOps.fit(image, size)
    image = img_to_array(image)
    image = image.reshape((1, image.shape[0], image.shape[1], image.shape[2]))
    image = preprocess_input(image)
    graph = tf.get_default_graph()
    set_session(session)
    preds = model.predict(image)
    label = decode_predictions(preds)
    # retrieve the most likely result, e.g. highest probability
    label = label[0][0]
    return label
    def filter_by_label(self, batch):
        """returns ([index of images that has interested subject in], [index of images without])"""
        network_out = self.__model.predict(preprocess_input_xception(batch))

        keep_index = []
        reject_index = []

        for i, each_image in enumerate(decode_predictions(network_out, top=5)):
            possible_classes = {each_pred[0] for each_pred in each_image}
            # no subject of interest found
            if len(possible_classes.intersection(self.interested_labels)) == 0:
                reject_index.append(i)
            else:
                keep_index.append(i)

        return keep_index, reject_index
def predict4():
    """Use Xception to label image"""
    path = 'static/Images/boxer.jpeg'
    
    img = image.load_img(path,target_size=(299,299))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)
    preds = model.predict(x)
    pclass = decode_predictions(preds, top=5)
    result = str(pclass[0][0][1])
    bad_chars=[';',':','_','!','*']
    for i in bad_chars:
        result = result.replace(i, ' ')
        result = result.title()
            
        print(result)
    return result
Exemple #13
0
def DataResult1():
    if request.method == 'POST':
        print(request)
        filesave2 = getfile(request)
        print(filesave2)
        preds = prepare_model(filesave2, model)

        pclass = decode_predictions(preds, top=5)
        #test prediction

        bad_chars = [';', ':', '_', '!', '*']
        result = str(pclass[0][0][1])

        for i in bad_chars:
            result = result.replace(i, ' ')
            result = result.title()

        print(result)
Exemple #14
0
def predict():
    """
    Generate predictions with the model
    when receiving data as a POST request
    """
    if request.method == "POST":
        # get url from the request
        data = request.data

        # preprocess the data
        processed = preprocess(data)

        # run predictions
        preds = loaded_model.predict(processed)

        # obtain predicted classes from predicted probabilities
        result = decode_predictions(preds, top=1)[0][0][1]

        # print in backend
        print("Received data:", data)
        print("Predicted labels:", result)

        return jsonify(result)
#Note: for a refrigerator , it predicted 'safe'. However the second probability was correct.
# Predicted: [('n04125021', 'safe', 0.45633033), ('n04070727', 'refrigerator', 0.3461617), ('n03710193', 'mailbox', 0.03995161)]

from tensorflow.keras.applications.xception import Xception
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.xception import preprocess_input, decode_predictions
import numpy as np

#img_path = '../data/refrigerator.jpg'
img_path = '../data/d.jpg'
img = image.load_img(img_path, target_size=(299, 299))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)

model = Xception(weights='imagenet')
preds = model.predict(x)
# decode the results into a list of tuples (class, description, probability)
# (one such list for each sample in the batch)
print('Predicted:', decode_predictions(preds, top=3)[0])
Exemple #16
0
from tensorflow.keras.applications.xception import Xception
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.xception import preprocess_input, decode_predictions
import numpy as np

import tensorflow
physical_devices = tensorflow.config.experimental.list_physical_devices('GPU')
print("physical_devices-------------", len(physical_devices))
tensorflow.config.experimental.set_memory_growth(physical_devices[0], True)

import time

model = Xception(weights='imagenet', include_top=True)

img_path = 'gas-mask.jpg'
img = image.load_img(img_path, target_size=(299, 299))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
start_time = time.time()
preds = model.predict(x)
print('Time: {}'.format(time.time() - start_time))
# decode the results into a list of tuples (class, description, probability)
# (one such list for each sample in the batch)
result = decode_predictions(preds, top=3)[0]
print('Predicted:', result[0])
print('{}: {:.2f} %'.format(result[0][1], 100*result[0][2]))


Exemple #17
0
def xception():
    if request.method == "POST":
        instaid = request.form["instaid"]

        #scraping images with beautifulsoup
        url = "https://www.instagram.com/" + instaid
        browser = Browser('chrome')
        browser.visit(url)
        sleep(1)
        bs = BeautifulSoup(browser.html, 'html.parser')

        #finds all the images in website and puts url in df
        images = bs.find_all('img', {'src': re.compile('.jpg')})
        image_urls = []
        for image in images:
            image_urls.append(str(image['src']))
        image_df = pd.DataFrame({"image": image_urls})

        import numpy as np
        import tensorflow as tf

        from tensorflow.keras.preprocessing import image
        from tensorflow.keras.applications.xception import (Xception,
                                                            preprocess_input,
                                                            decode_predictions)

        from PIL import Image
        import requests
        from io import BytesIO

        model = Xception(include_top=True, weights='imagenet')

        prds = []
        pcts = []
        for i in image_urls:
            url = i
            response = requests.get(url)
            img = Image.open(BytesIO(response.content))
            img = img.resize((299, 299), Image.NEAREST)
            x = image.img_to_array(img)
            x = np.expand_dims(x, axis=0)
            x = preprocess_input(x)
            predictions = model.predict(x)
            prds.append(decode_predictions(predictions, top=1)[0][0][1])
            pcts.append(decode_predictions(predictions, top=1)[0][0][2])
#             cnns.append(decode_predictions(predictions, top=3)[0])
        image_df["predictions"] = prds
        image_df["%"] = pcts
        image_df.sort_values("%", ascending=False, inplace=True)
        image_df.reset_index(drop=True, inplace=True)

        #         from IPython.display import Image
        #         from IPython.core.display import HTML

        #         def path_to_image_html(path):
        #             return '<img src="'+ path + '" width="300" >'

        #         print("Server received request for 'About' page...")
        #         return (image_df.to_html(escape=False ,formatters=dict(image=path_to_image_html)))

        gkey = "AIzaSyA-Rjp6nOeJp6815Xt1Kkuxc5XKMiKl_yA"
        depart = request.form["depart"]
        target_radius = 1000

        records = pd.DataFrame()
        target_list = list(set(image_df["predictions"]))[0:5]
        targets = str(depart).split(",")
        for target in targets:
            # Build the endpoint URL
            target_url = (
                f'https://maps.googleapis.com/maps/api/geocode/json?address={target}&key={gkey}'
            )
            geo_data = requests.get(target_url).json()

            target_adr = geo_data["results"][0]["formatted_address"]
            lat = geo_data["results"][0]["geometry"]["location"]["lat"]
            lng = geo_data["results"][0]["geometry"]["location"]["lng"]

            target_coordinates = str(lat) + "," + str(lng)

            #             target_radius = 800
            target_type = ""

            # set up a parameters dictionary

            for target_search in target_list:
                params = {
                    "location": target_coordinates,
                    "keyword": target_search,
                    "radius": target_radius,
                    "type": target_type,
                    "key": gkey
                }

                # base url
                base_url = "https://maps.googleapis.com/maps/api/place/nearbysearch/json"

                # run a request using our params dictionary
                response = requests.get(base_url, params=params)
                places_data = response.json()

                n = 0
                # while int(n) > len(places_data):
                while int(n) < len(places_data["results"]):
                    try:
                        price = places_data["results"][int(n)]["price_level"]
                    except KeyError:
                        price = "NA"
                    try:
                        link = places_data["results"][int(n)]["place_id"]
                    except KeyError:
                        link = "NA"
                    try:
                        score = places_data["results"][int(n)]["rating"]
                    except KeyError:
                        score = "NA"
                    try:
                        reviews = places_data["results"][int(
                            n)]["user_ratings_total"]
                    except KeyError:
                        reviews = "NA"
                    try:
                        lat = places_data["results"][int(
                            n)]["geometry"]["location"]["lat"]
                        lon = places_data["results"][int(
                            n)]["geometry"]["location"]["lng"]
#                         dist = pd.read_html(f"http://boulter.com/gps/distance/?from={target_coordinates}&to={poi_coord}&units=k")
#                         distance = float(str(dist[1][1][1]).split(" ")[0])
                    except IndexError or TimeoutError:
                        distance = "NA"


#                         drive_url = f"https://maps.googleapis.com/maps/api/distancematrix/json?units=imperial&origins={target_coordinates}&destinations={poi_coord}&key=AIzaSyA-Rjp6nOeJp6815Xt1Kkuxc5XKMiKl_yA"
#                         drive_res = requests.get(drive_url).json()
#                         distance = drive_res["rows"][0]["elements"][0]["distance"]["value"]/1000
#                         duration= int(drive_res["rows"][0]["elements"][0]["duration"]["value"]/60)
#                     except KeyError:
#                         distance = "NA"
#                         drive_dur = "NA"

#                     try:
#                         walk_url = f"https://maps.googleapis.com/maps/api/distancematrix/json?units=imperial&origins={target_coordinates}&destinations={poi_coord}&mode=walking&key=AIzaSyA-Rjp6nOeJp6815Xt1Kkuxc5XKMiKl_yA"
#                         walk_res = requests.get(walk_url).json()
#                         distance = walk_res["rows"][0]["elements"][0]["distance"]["value"]/1000
#                         walk_dur = int(walk_res["rows"][0]["elements"][0]["duration"]["value"]/60)
#                     except KeyError:
#                         walk_dur = "NA"

#                     try:
#                         transit_url = f"https://maps.googleapis.com/maps/api/distancematrix/json?units=imperial&origins={target_coordinates}&destinations={poi_coord}&mode=transit&key=AIzaSyA-Rjp6nOeJp6815Xt1Kkuxc5XKMiKl_yA"
#                         transit_res = requests.get(transit_url).json()
#                         transit_dur = int(transit_res["rows"][0]["elements"][0]["duration"]["value"]/60)
#                     except KeyError:
#                         transit_dur = "NA"

                    content = pd.DataFrame({
                        "depart":
                        target_adr,
                        "poi":
                        target_search,
                        "name": [places_data["results"][int(n)]["name"]],
                        "score":
                        score,
                        "reviews":
                        reviews,
                        "price":
                        price,
                        "link":
                        link,
                        "address":
                        [places_data["results"][int(n)]["vicinity"]],
                        "lat":
                        lat,
                        "lon":
                        lon
                    })
                    #                                             "drive":duration,
                    #                                             "public":transit_dur,
                    #                                             "walk":walk_dur})
                    records = records.append(content)
                    n += 1
        records.reset_index(drop=True, inplace=True)
        #         records["link"]=records["link"].apply(lambda x: '<a href="https://www.google.com/maps/place/?q=place_id:{0}">link</a>'.format(x))
        #         return (records.to_html(escape=False))
        px.set_mapbox_access_token(
            "pk.eyJ1IjoidGl2bWU3IiwiYSI6ImNrMWEwZDVtNDI4Zm4zYm1vY3o3Z25zejEifQ._yTPkj3nXTzor72zIevLCQ"
        )
        fig = px.scatter_mapbox(records,
                                lat="lat",
                                lon="lon",
                                color="poi",
                                hover_name="name",
                                zoom=13)
        fig.update_layout(autosize=True, width=1500, height=750)
        #                           ,margin=go.layout.Margin(l=50,r=50,b=100,t=100,pad=4))

        return (py.offline.plot(fig, output_type="div"))

    return render_template("xception.html")
Exemple #18
0
def vgg19():
    if request.method == "POST":
        instaid = request.form["instaid"]

        #scraping images with beautifulsoup
        url = "https://www.instagram.com/" + instaid
        browser = Browser('chrome')
        browser.visit(url)
        sleep(1)
        bs = BeautifulSoup(browser.html, 'html.parser')

        #finds all the images in website and puts url in df
        images = bs.find_all('img', {'src': re.compile('.jpg')})
        image_urls = []
        for image in images:
            image_urls.append(str(image['src']))
        image_df = pd.DataFrame({"image": image_urls})

        import numpy as np
        import tensorflow as tf

        from tensorflow import keras
        from tensorflow.keras.preprocessing import image
        from tensorflow.keras.applications.vgg19 import (VGG19,
                                                         preprocess_input,
                                                         decode_predictions)

        from PIL import Image
        import requests
        from io import BytesIO

        model = VGG19(include_top=True, weights='imagenet')

        prds = []
        pcts = []
        for i in image_urls:
            url = i
            response = requests.get(url)
            img = Image.open(BytesIO(response.content))
            img = img.resize((224, 224), Image.NEAREST)
            x = image.img_to_array(img)
            x = np.expand_dims(x, axis=0)
            x = preprocess_input(x)
            predictions = model.predict(x)
            prds.append(decode_predictions(predictions, top=1)[0][0][1])
            pcts.append(decode_predictions(predictions, top=1)[0][0][2])


#             cnns.append(decode_predictions(predictions, top=3)[0])
        image_df["prediction"] = prds
        image_df["%"] = pcts
        image_df.sort_values("%", ascending=False, inplace=True)

        from IPython.display import Image
        from IPython.core.display import HTML

        def path_to_image_html(path):
            return '<img src="' + path + '" width="300" >'

        print("Server received request for 'About' page...")
        return (image_df.to_html(escape=False,
                                 formatters=dict(image=path_to_image_html)))

    return render_template("vgg19.html")
Exemple #19
0
    def set_model(self, model_name, top_n=5):
        if model_name == 'densenet':
            self.model = densenet.DenseNet121(include_top=True,
                                              weights='imagenet',
                                              input_tensor=None,
                                              input_shape=None,
                                              pooling=None,
                                              classes=1000)
            self.target_size = (224, 224)
            self.decoder = lambda x: densenet.decode_predictions(x, top=top_n)
            self.ref = """
                <ul>
                <li><a href='https://arxiv.org/abs/1608.06993' target='_blank'>
                Densely Connected Convolutional Networks</a> (CVPR 2017 Best Paper Award)</li>
                </ul>
                """

        elif model_name == 'inception_resnet_v2':
            self.model = inception_resnet_v2.InceptionResNetV2(
                include_top=True,
                weights='imagenet',
                input_tensor=None,
                input_shape=None,
                pooling=None,
                classes=1000)
            self.target_size = (299, 299)
            self.decoder = lambda x: inception_resnet_v2.decode_predictions(
                x, top=top_n)
            self.ref = """
                <ul>
                <li><a href='https://arxiv.org/abs/1602.07261' target='_blank'>
                Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning</a></li>
                </ul>
                """

        elif model_name == 'inception_v3':
            self.model = inception_v3.InceptionV3(include_top=True,
                                                  weights='imagenet',
                                                  input_tensor=None,
                                                  input_shape=None,
                                                  pooling=None,
                                                  classes=1000)
            self.target_size = (299, 299)
            self.decoder = lambda x: inception_v3.decode_predictions(x,
                                                                     top=top_n)
            self.ref = """<ul>
                <li><a href='https://arxiv.org/abs/1512.00567' target='_blank'>
                Rethinking the Inception Architecture for Computer Vision</a></li>
                </ul>
                """

        elif model_name == 'mobilenet':
            self.model = mobilenet.MobileNet(input_shape=None,
                                             alpha=1.0,
                                             depth_multiplier=1,
                                             dropout=1e-3,
                                             include_top=True,
                                             weights='imagenet',
                                             input_tensor=None,
                                             pooling=None,
                                             classes=1000)
            self.target_size = (224, 224)
            self.decoder = lambda x: mobilenet.decode_predictions(x, top=top_n)
            self.ref = """<ul>
                <li><a href='https://arxiv.org/abs/1704.04861' target='_blank'>
                MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications</a></li>
                </ul>
                """

        elif model_name == 'mobilenet_v2':
            self.model = mobilenet_v2.MobileNetV2(input_shape=None,
                                                  alpha=1.0,
                                                  include_top=True,
                                                  weights='imagenet',
                                                  input_tensor=None,
                                                  pooling=None,
                                                  classes=1000)
            self.target_size = (224, 224)
            self.decoder = lambda x: mobilenet_v2.decode_predictions(x,
                                                                     top=top_n)
            self.ref = """<ul>
                <li><a href='https://arxiv.org/abs/1801.04381' target='_blank'>
                MobileNetV2: Inverted Residuals and Linear Bottlenecks</a></li>
                </ul>
                """

        elif model_name == 'nasnet':
            self.model = nasnet.NASNetLarge(input_shape=None,
                                            include_top=True,
                                            weights='imagenet',
                                            input_tensor=None,
                                            pooling=None,
                                            classes=1000)
            self.target_size = (224, 224)
            self.decoder = lambda x: nasnet.decode_predictions(x, top=top_n)
            self.ref = """<ul>
                <li><a href='https://arxiv.org/abs/1707.07012' target='_blank'>
                Learning Transferable Architectures for Scalable Image Recognition</a></li>
                </ul>
                """

        elif model_name == 'resnet50':
            self.model = resnet50.ResNet50(include_top=True,
                                           weights='imagenet',
                                           input_tensor=None,
                                           input_shape=None,
                                           pooling=None,
                                           classes=1000)
            self.target_size = (224, 224)
            self.decoder = lambda x: resnet50.decode_predictions(x, top=top_n)
            self.ref = """<ul>
                <li>ResNet : 
                <a href='https://arxiv.org/abs/1512.03385' target='_blank'>Deep Residual Learning for Image Recognition
                </a></li>
                </ul>
                """

        elif model_name == 'vgg16':
            self.model = vgg16.VGG16(include_top=True,
                                     weights='imagenet',
                                     input_tensor=None,
                                     input_shape=None,
                                     pooling=None,
                                     classes=1000)
            self.target_size = (224, 224)
            self.decoder = lambda x: vgg16.decode_predictions(x, top=top_n)
            self.ref = """<ul>
            <li><a href='https://arxiv.org/abs/1409.1556' target='_blank'>
            Very Deep Convolutional Networks for Large-Scale Image Recognition</a></li>
            </ul>"""

        elif model_name == 'vgg19':
            self.model = vgg19.VGG19(include_top=True,
                                     weights='imagenet',
                                     input_tensor=None,
                                     input_shape=None,
                                     pooling=None,
                                     classes=1000)
            self.target_size = (224, 224)
            self.decoder = lambda x: vgg19.decode_predictions(x, top=top_n)
            self.ref = """<ul>
            <li><a href='https://arxiv.org/abs/1409.1556' target='_blank'>Very Deep Convolutional Networks for Large-Scale Image Recognition</a></li>
            </ul>"""

        elif model_name == 'xception':
            self.model = xception.Xception(include_top=True,
                                           weights='imagenet',
                                           input_tensor=None,
                                           input_shape=None,
                                           pooling=None,
                                           classes=1000)
            self.target_size = (299, 299)
            self.decoder = lambda x: xception.decode_predictions(x, top=top_n)
            self.ref = """<ul>
            <li><a href='https://arxiv.org/abs/1610.02357' target='_blank'>Xception: Deep Learning with Depthwise Separable Convolutions</a></li>
            </ul>"""

        else:
            logger.ERROR('There has no model name !!!')
## Let's test-drive it
"""

# 1. Convert the image to numpy array
img = get_img_array(img_path)

# 2. Keep a copy of the original image
orig_img = np.copy(img[0]).astype(np.uint8)

# 3. Preprocess the image
img_processed = tf.cast(xception.preprocess_input(img), dtype=tf.float32)

# 4. Get model predictions
preds = model.predict(img_processed)
top_pred_idx = tf.argmax(preds[0])
print("Predicted:", top_pred_idx, xception.decode_predictions(preds, top=1)[0])

# 5. Get the gradients of the last layer for the predicted label
grads = get_gradients(img_processed, top_pred_idx=top_pred_idx)

# 6. Get the integrated gradients
igrads = random_baseline_integrated_gradients(np.copy(orig_img),
                                              top_pred_idx=top_pred_idx,
                                              num_steps=50,
                                              num_runs=2)

# 7. Process the gradients and plot
vis = GradVisualizer()
vis.visualize(
    image=orig_img,
    gradients=grads[0].numpy(),
Exemple #21
0

img = get_image(
    "https://upload.wikimedia.org/wikipedia/commons/6/66/"
    "An_up-close_picture_of_a_curious_male_domestic_shorthair_tabby_cat.jpg")

# %%
print(img.shape)
plt.imshow(img)

# %%
# Resize to target shape
img = cv2.resize(img, input_shape)
plt.imshow(img)

# %%
# Xception uses tf preprocessing
img = preprocess_input(img)

# %%
# Note that 299 x 299 is default shape for xception
model = Xception()

# Need a 4th dim for samples
pred = model.predict(np.expand_dims(img, 0))

# %%
decode_predictions(pred, top=5)

# %%