Exemple #1
0
class StructureTest(test_base.DatasetTestBase, parameterized.TestCase,
                    test_util.TensorFlowTestCase):

    # pylint: disable=g-long-lambda,protected-access
    @parameterized.named_parameters(
        ("Tensor", lambda: constant_op.constant(37.0), tensor_spec.TensorSpec,
         [dtypes.float32], [[]]),
        ("TensorArray", lambda: tensor_array_ops.TensorArray(
            dtype=dtypes.float32, element_shape=(3, ), size=0),
         tensor_array_ops.TensorArraySpec, [dtypes.variant], [[]]),
        ("SparseTensor", lambda: sparse_tensor.SparseTensor(
            indices=[[3, 4]], values=[-1], dense_shape=[4, 5]),
         sparse_tensor.SparseTensorSpec, [dtypes.variant], [None]),
        ("RaggedTensor",
         lambda: ragged_factory_ops.constant([[1, 2], [], [4]]),
         ragged_tensor.RaggedTensorSpec, [dtypes.variant], [None]),
        ("Nested_0", lambda:
         (constant_op.constant(37.0), constant_op.constant([1, 2, 3])), tuple,
         [dtypes.float32, dtypes.int32], [[], [3]]),
        ("Nested_1", lambda: {
            "a": constant_op.constant(37.0),
            "b": constant_op.constant([1, 2, 3])
        }, dict, [dtypes.float32, dtypes.int32], [[], [3]]),
        ("Nested_2", lambda: {
            "a":
            constant_op.constant(37.0),
            "b":
            (sparse_tensor.
             SparseTensor(indices=[[0, 0]], values=[1], dense_shape=[1, 1]),
             sparse_tensor.SparseTensor(
                 indices=[[3, 4]], values=[-1], dense_shape=[4, 5]))
        }, dict, [dtypes.float32, dtypes.variant, dtypes.variant], [[], None,
                                                                    None]),
    )
    def testFlatStructure(self, value_fn, expected_structure, expected_types,
                          expected_shapes):
        value = value_fn()
        s = structure.type_spec_from_value(value)
        self.assertIsInstance(s, expected_structure)
        flat_types = structure.get_flat_tensor_types(s)
        self.assertEqual(expected_types, flat_types)
        flat_shapes = structure.get_flat_tensor_shapes(s)
        self.assertLen(flat_shapes, len(expected_shapes))
        for expected, actual in zip(expected_shapes, flat_shapes):
            if expected is None:
                self.assertEqual(actual.ndims, None)
            else:
                self.assertEqual(actual.as_list(), expected)

    @parameterized.named_parameters(
        ("Tensor", lambda: constant_op.constant(37.0), lambda: [
            constant_op.constant(38.0),
            array_ops.placeholder(dtypes.float32),
            variables.Variable(100.0), 42.0,
            np.array(42.0, dtype=np.float32)
        ],
         lambda: [constant_op.constant([1.0, 2.0]),
                  constant_op.constant(37)]),
        ("TensorArray", lambda: tensor_array_ops.TensorArray(
            dtype=dtypes.float32, element_shape=(3, ), size=0), lambda: [
                tensor_array_ops.TensorArray(
                    dtype=dtypes.float32, element_shape=(3, ), size=0),
                tensor_array_ops.TensorArray(
                    dtype=dtypes.float32, element_shape=(3, ), size=10)
            ], lambda: [
                tensor_array_ops.TensorArray(
                    dtype=dtypes.int32, element_shape=(3, ), size=0),
                tensor_array_ops.TensorArray(
                    dtype=dtypes.float32, element_shape=(), size=0)
            ]),
        ("SparseTensor", lambda: sparse_tensor.SparseTensor(
            indices=[[3, 4]], values=[-1], dense_shape=[4, 5]), lambda: [
                sparse_tensor.SparseTensor(indices=[[1, 1], [3, 4]],
                                           values=[10, -1],
                                           dense_shape=[4, 5]),
                sparse_tensor.SparseTensorValue(indices=[[1, 1], [3, 4]],
                                                values=[10, -1],
                                                dense_shape=[4, 5]),
                array_ops.sparse_placeholder(dtype=dtypes.int32),
                array_ops.sparse_placeholder(dtype=dtypes.int32,
                                             shape=[None, None])
            ], lambda: [
                constant_op.constant(37, shape=[4, 5]),
                sparse_tensor.SparseTensor(
                    indices=[[3, 4]], values=[-1], dense_shape=[5, 6]),
                array_ops.sparse_placeholder(dtype=dtypes.int32,
                                             shape=[None, None, None]),
                sparse_tensor.SparseTensor(
                    indices=[[3, 4]], values=[-1.0], dense_shape=[4, 5])
            ]),
        ("RaggedTensor",
         lambda: ragged_factory_ops.constant([[1, 2], [], [3]]), lambda: [
             ragged_factory_ops.constant([[1, 2], [3, 4], []]),
             ragged_factory_ops.constant([[1], [2, 3, 4], [5]]),
         ], lambda: [
             ragged_factory_ops.constant(1),
             ragged_factory_ops.constant([1, 2]),
             ragged_factory_ops.constant([[1], [2]]),
             ragged_factory_ops.constant([["a", "b"]]),
         ]),
        ("Nested", lambda: {
            "a": constant_op.constant(37.0),
            "b": constant_op.constant([1, 2, 3])
        }, lambda: [{
            "a": constant_op.constant(15.0),
            "b": constant_op.constant([4, 5, 6])
        }], lambda: [{
            "a": constant_op.constant(15.0),
            "b": constant_op.constant([4, 5, 6, 7])
        }, {
            "a": constant_op.constant(15),
            "b": constant_op.constant([4, 5, 6])
        }, {
            "a":
            constant_op.constant(15),
            "b":
            sparse_tensor.SparseTensor(
                indices=[[0], [1], [2]], values=[4, 5, 6], dense_shape=[3])
        }, (constant_op.constant(15.0), constant_op.constant([4, 5, 6]))]),
    )
    @test_util.run_deprecated_v1
    def testIsCompatibleWithStructure(self, original_value_fn,
                                      compatible_values_fn,
                                      incompatible_values_fn):
        original_value = original_value_fn()
        compatible_values = compatible_values_fn()
        incompatible_values = incompatible_values_fn()
        s = structure.type_spec_from_value(original_value)
        for compatible_value in compatible_values:
            self.assertTrue(
                structure.are_compatible(
                    s, structure.type_spec_from_value(compatible_value)))
        for incompatible_value in incompatible_values:
            self.assertFalse(
                structure.are_compatible(
                    s, structure.type_spec_from_value(incompatible_value)))

    @parameterized.named_parameters(
        ("Tensor", lambda: constant_op.constant(37.0),
         lambda: constant_op.constant(42.0),
         lambda: constant_op.constant([5])),
        ("TensorArray", lambda: tensor_array_ops.TensorArray(
            dtype=dtypes.float32, element_shape=(3, ), size=0),
         lambda: tensor_array_ops.TensorArray(
             dtype=dtypes.float32, element_shape=(3, ), size=0),
         lambda: tensor_array_ops.TensorArray(
             dtype=dtypes.int32, element_shape=(), size=0)),
        ("SparseTensor", lambda: sparse_tensor.SparseTensor(
            indices=[[3, 4]], values=[-1], dense_shape=[4, 5]),
         lambda: sparse_tensor.SparseTensor(
             indices=[[1, 2]], values=[42], dense_shape=[4, 5]),
         lambda: sparse_tensor.SparseTensor(
             indices=[[3]], values=[-1], dense_shape=[5]),
         lambda: sparse_tensor.SparseTensor(
             indices=[[3, 4]], values=[1.0], dense_shape=[4, 5])),
        ("RaggedTensor",
         lambda: ragged_factory_ops.constant([[[1, 2]], [[3]]]),
         lambda: ragged_factory_ops.constant([[[5]], [[8], [3, 2]]]), lambda:
         ragged_factory_ops.constant([[[1]], [[2], [3]]], ragged_rank=1),
         lambda: ragged_factory_ops.constant([[[1.0, 2.0]], [[3.0]]]),
         lambda: ragged_factory_ops.constant([[[1]], [[2]], [[3]]])),
        ("Nested", lambda: {
            "a": constant_op.constant(37.0),
            "b": constant_op.constant([1, 2, 3])
        }, lambda: {
            "a": constant_op.constant(42.0),
            "b": constant_op.constant([4, 5, 6])
        }, lambda: {
            "a": constant_op.constant([1, 2, 3]),
            "b": constant_op.constant(37.0)
        }),
    )  # pyformat: disable
    def testStructureFromValueEquality(self, value1_fn, value2_fn,
                                       *not_equal_value_fns):
        # pylint: disable=g-generic-assert
        s1 = structure.type_spec_from_value(value1_fn())
        s2 = structure.type_spec_from_value(value2_fn())
        self.assertEqual(s1, s1)  # check __eq__ operator.
        self.assertEqual(s1, s2)  # check __eq__ operator.
        self.assertFalse(s1 != s1)  # check __ne__ operator.
        self.assertFalse(s1 != s2)  # check __ne__ operator.
        for c1, c2 in zip(nest.flatten(s1), nest.flatten(s2)):
            self.assertEqual(hash(c1), hash(c1))
            self.assertEqual(hash(c1), hash(c2))
        for value_fn in not_equal_value_fns:
            s3 = structure.type_spec_from_value(value_fn())
            self.assertNotEqual(s1, s3)  # check __ne__ operator.
            self.assertNotEqual(s2, s3)  # check __ne__ operator.
            self.assertFalse(s1 == s3)  # check __eq_ operator.
            self.assertFalse(s2 == s3)  # check __eq_ operator.

    @parameterized.named_parameters(
        ("RaggedTensor_RaggedRank",
         structure.RaggedTensorStructure(dtypes.int32, None, 1),
         structure.RaggedTensorStructure(dtypes.int32, None, 2)),
        ("RaggedTensor_Shape",
         structure.RaggedTensorStructure(dtypes.int32, [3, None], 1),
         structure.RaggedTensorStructure(dtypes.int32, [5, None], 1)),
        ("RaggedTensor_DType",
         structure.RaggedTensorStructure(dtypes.int32, None, 1),
         structure.RaggedTensorStructure(dtypes.float32, None, 1)),
    )
    def testRaggedStructureInequality(self, s1, s2):
        # pylint: disable=g-generic-assert
        self.assertNotEqual(s1, s2)  # check __ne__ operator.
        self.assertFalse(s1 == s2)  # check __eq__ operator.

    @parameterized.named_parameters(
        ("Tensor", lambda: constant_op.constant(37.0),
         lambda: constant_op.constant(42.0),
         lambda: constant_op.constant([5])),
        ("TensorArray", lambda: tensor_array_ops.TensorArray(
            dtype=dtypes.float32, element_shape=(3, ), size=0),
         lambda: tensor_array_ops.TensorArray(
             dtype=dtypes.float32, element_shape=(3, ), size=0),
         lambda: tensor_array_ops.TensorArray(
             dtype=dtypes.int32, element_shape=(), size=0)),
        ("SparseTensor", lambda: sparse_tensor.SparseTensor(
            indices=[[3, 4]], values=[-1], dense_shape=[4, 5]),
         lambda: sparse_tensor.SparseTensor(
             indices=[[1, 2]], values=[42], dense_shape=[4, 5]),
         lambda: sparse_tensor.SparseTensor(
             indices=[[3]], values=[-1], dense_shape=[5])),
        ("Nested", lambda: {
            "a": constant_op.constant(37.0),
            "b": constant_op.constant([1, 2, 3])
        }, lambda: {
            "a": constant_op.constant(42.0),
            "b": constant_op.constant([4, 5, 6])
        }, lambda: {
            "a": constant_op.constant([1, 2, 3]),
            "b": constant_op.constant(37.0)
        }),
    )
    def testHash(self, value1_fn, value2_fn, value3_fn):
        s1 = structure.type_spec_from_value(value1_fn())
        s2 = structure.type_spec_from_value(value2_fn())
        s3 = structure.type_spec_from_value(value3_fn())
        for c1, c2, c3 in zip(nest.flatten(s1), nest.flatten(s2),
                              nest.flatten(s3)):
            self.assertEqual(hash(c1), hash(c1))
            self.assertEqual(hash(c1), hash(c2))
            self.assertNotEqual(hash(c1), hash(c3))
            self.assertNotEqual(hash(c2), hash(c3))

    @parameterized.named_parameters(
        (
            "Tensor",
            lambda: constant_op.constant(37.0),
        ),
        (
            "SparseTensor",
            lambda: sparse_tensor.SparseTensor(
                indices=[[3, 4]], values=[-1], dense_shape=[4, 5]),
        ),
        ("TensorArray", lambda: tensor_array_ops.TensorArray(
            dtype=dtypes.float32, element_shape=(), size=1).write(0, 7)),
        (
            "RaggedTensor",
            lambda: ragged_factory_ops.constant([[1, 2], [], [3]]),
        ),
        (
            "Nested_0",
            lambda: {
                "a": constant_op.constant(37.0),
                "b": constant_op.constant([1, 2, 3])
            },
        ),
        (
            "Nested_1",
            lambda: {
                "a":
                constant_op.constant(37.0),
                "b": (sparse_tensor.SparseTensor(
                    indices=[[0, 0]], values=[1], dense_shape=[1, 1]),
                      sparse_tensor.SparseTensor(
                          indices=[[3, 4]], values=[-1], dense_shape=[4, 5]))
            },
        ),
    )
    def testRoundTripConversion(self, value_fn):
        value = value_fn()
        s = structure.type_spec_from_value(value)

        def maybe_stack_ta(v):
            if isinstance(v, tensor_array_ops.TensorArray):
                return v.stack()
            else:
                return v

        before = self.evaluate(maybe_stack_ta(value))
        after = self.evaluate(
            maybe_stack_ta(
                structure.from_tensor_list(s,
                                           structure.to_tensor_list(s,
                                                                    value))))

        flat_before = nest.flatten(before)
        flat_after = nest.flatten(after)
        for b, a in zip(flat_before, flat_after):
            if isinstance(b, sparse_tensor.SparseTensorValue):
                self.assertAllEqual(b.indices, a.indices)
                self.assertAllEqual(b.values, a.values)
                self.assertAllEqual(b.dense_shape, a.dense_shape)
            elif isinstance(b, (ragged_tensor.RaggedTensor,
                                ragged_tensor_value.RaggedTensorValue)):
                self.assertAllEqual(b, a)
            else:
                self.assertAllEqual(b, a)

    # pylint: enable=g-long-lambda

    def preserveStaticShape(self):
        rt = ragged_factory_ops.constant([[1, 2], [], [3]])
        rt_s = structure.type_spec_from_value(rt)
        rt_after = structure.from_tensor_list(
            rt_s, structure.to_tensor_list(rt_s, rt))
        self.assertEqual(rt_after.row_splits.shape.as_list(),
                         rt.row_splits.shape.as_list())
        self.assertEqual(rt_after.values.shape.as_list(), [None])

        st = sparse_tensor.SparseTensor(indices=[[3, 4]],
                                        values=[-1],
                                        dense_shape=[4, 5])
        st_s = structure.type_spec_from_value(st)
        st_after = structure.from_tensor_list(
            st_s, structure.to_tensor_list(st_s, st))
        self.assertEqual(st_after.indices.shape.as_list(), [None, 2])
        self.assertEqual(st_after.values.shape.as_list(), [None])
        self.assertEqual(st_after.dense_shape.shape.as_list(),
                         st.dense_shape.shape.as_list())

    def testIncompatibleStructure(self):
        # Define three mutually incompatible values/structures, and assert that:
        # 1. Using one structure to flatten a value with an incompatible structure
        #    fails.
        # 2. Using one structure to restructre a flattened value with an
        #    incompatible structure fails.
        value_tensor = constant_op.constant(42.0)
        s_tensor = structure.type_spec_from_value(value_tensor)
        flat_tensor = structure.to_tensor_list(s_tensor, value_tensor)

        value_sparse_tensor = sparse_tensor.SparseTensor(indices=[[0, 0]],
                                                         values=[1],
                                                         dense_shape=[1, 1])
        s_sparse_tensor = structure.type_spec_from_value(value_sparse_tensor)
        flat_sparse_tensor = structure.to_tensor_list(s_sparse_tensor,
                                                      value_sparse_tensor)

        value_nest = {
            "a": constant_op.constant(37.0),
            "b": constant_op.constant([1, 2, 3])
        }
        s_nest = structure.type_spec_from_value(value_nest)
        flat_nest = structure.to_tensor_list(s_nest, value_nest)

        with self.assertRaisesRegexp(
                ValueError,
                r"SparseTensor.* is not convertible to a tensor with "
                r"dtype.*float32.* and shape \(\)"):
            structure.to_tensor_list(s_tensor, value_sparse_tensor)
        with self.assertRaisesRegexp(
                ValueError,
                "The two structures don't have the same nested structure."):
            structure.to_tensor_list(s_tensor, value_nest)

        with self.assertRaisesRegexp(
                TypeError, "Neither a SparseTensor nor SparseTensorValue"):
            structure.to_tensor_list(s_sparse_tensor, value_tensor)

        with self.assertRaisesRegexp(
                ValueError,
                "The two structures don't have the same nested structure."):
            structure.to_tensor_list(s_sparse_tensor, value_nest)

        with self.assertRaisesRegexp(
                ValueError,
                "The two structures don't have the same nested structure."):
            structure.to_tensor_list(s_nest, value_tensor)

        with self.assertRaisesRegexp(
                ValueError,
                "The two structures don't have the same nested structure."):
            structure.to_tensor_list(s_nest, value_sparse_tensor)

        with self.assertRaisesRegexp(ValueError, r"Incompatible input:"):
            structure.from_tensor_list(s_tensor, flat_sparse_tensor)

        with self.assertRaisesRegexp(ValueError,
                                     "Expected 1 tensors but got 2."):
            structure.from_tensor_list(s_tensor, flat_nest)

        with self.assertRaisesRegexp(ValueError, "Incompatible input: "):
            structure.from_tensor_list(s_sparse_tensor, flat_tensor)

        with self.assertRaisesRegexp(ValueError,
                                     "Expected 1 tensors but got 2."):
            structure.from_tensor_list(s_sparse_tensor, flat_nest)

        with self.assertRaisesRegexp(ValueError,
                                     "Expected 2 tensors but got 1."):
            structure.from_tensor_list(s_nest, flat_tensor)

        with self.assertRaisesRegexp(ValueError,
                                     "Expected 2 tensors but got 1."):
            structure.from_tensor_list(s_nest, flat_sparse_tensor)

    def testIncompatibleNestedStructure(self):
        # Define three mutually incompatible nested values/structures, and assert
        # that:
        # 1. Using one structure to flatten a value with an incompatible structure
        #    fails.
        # 2. Using one structure to restructure a flattened value with an
        #    incompatible structure fails.

        value_0 = {
            "a": constant_op.constant(37.0),
            "b": constant_op.constant([1, 2, 3])
        }
        s_0 = structure.type_spec_from_value(value_0)
        flat_s_0 = structure.to_tensor_list(s_0, value_0)

        # `value_1` has compatible nested structure with `value_0`, but different
        # classes.
        value_1 = {
            "a":
            constant_op.constant(37.0),
            "b":
            sparse_tensor.SparseTensor(indices=[[0, 0]],
                                       values=[1],
                                       dense_shape=[1, 1])
        }
        s_1 = structure.type_spec_from_value(value_1)
        flat_s_1 = structure.to_tensor_list(s_1, value_1)

        # `value_2` has incompatible nested structure with `value_0` and `value_1`.
        value_2 = {
            "a":
            constant_op.constant(37.0),
            "b": (sparse_tensor.SparseTensor(indices=[[0, 0]],
                                             values=[1],
                                             dense_shape=[1, 1]),
                  sparse_tensor.SparseTensor(indices=[[3, 4]],
                                             values=[-1],
                                             dense_shape=[4, 5]))
        }
        s_2 = structure.type_spec_from_value(value_2)
        flat_s_2 = structure.to_tensor_list(s_2, value_2)

        with self.assertRaisesRegexp(
                ValueError,
                r"SparseTensor.* is not convertible to a tensor with "
                r"dtype.*int32.* and shape \(3,\)"):
            structure.to_tensor_list(s_0, value_1)

        with self.assertRaisesRegexp(
                ValueError,
                "The two structures don't have the same nested structure."):
            structure.to_tensor_list(s_0, value_2)

        with self.assertRaisesRegexp(
                TypeError, "Neither a SparseTensor nor SparseTensorValue"):
            structure.to_tensor_list(s_1, value_0)

        with self.assertRaisesRegexp(
                ValueError,
                "The two structures don't have the same nested structure."):
            structure.to_tensor_list(s_1, value_2)

        # NOTE(mrry): The repr of the dictionaries is not sorted, so the regexp
        # needs to account for "a" coming before or after "b". It might be worth
        # adding a deterministic repr for these error messages (among other
        # improvements).
        with self.assertRaisesRegexp(
                ValueError,
                "The two structures don't have the same nested structure."):
            structure.to_tensor_list(s_2, value_0)

        with self.assertRaisesRegexp(
                ValueError,
                "The two structures don't have the same nested structure."):
            structure.to_tensor_list(s_2, value_1)

        with self.assertRaisesRegexp(ValueError, r"Incompatible input:"):
            structure.from_tensor_list(s_0, flat_s_1)

        with self.assertRaisesRegexp(ValueError,
                                     "Expected 2 tensors but got 3."):
            structure.from_tensor_list(s_0, flat_s_2)

        with self.assertRaisesRegexp(ValueError, "Incompatible input: "):
            structure.from_tensor_list(s_1, flat_s_0)

        with self.assertRaisesRegexp(ValueError,
                                     "Expected 2 tensors but got 3."):
            structure.from_tensor_list(s_1, flat_s_2)

        with self.assertRaisesRegexp(ValueError,
                                     "Expected 3 tensors but got 2."):
            structure.from_tensor_list(s_2, flat_s_0)

        with self.assertRaisesRegexp(ValueError,
                                     "Expected 3 tensors but got 2."):
            structure.from_tensor_list(s_2, flat_s_1)

    @parameterized.named_parameters(
        ("Tensor", dtypes.float32, tensor_shape.scalar(), ops.Tensor,
         structure.TensorStructure(dtypes.float32, [])),
        ("SparseTensor", dtypes.int32, tensor_shape.matrix(
            2, 2), sparse_tensor.SparseTensor,
         structure.SparseTensorStructure(dtypes.int32, [2, 2])),
        ("TensorArray_0", dtypes.int32,
         tensor_shape.as_shape([None, True, 2, 2
                                ]), tensor_array_ops.TensorArray,
         structure.TensorArrayStructure(
             dtypes.int32, [2, 2], dynamic_size=None, infer_shape=True)),
        ("TensorArray_1", dtypes.int32,
         tensor_shape.as_shape([True, None, 2, 2
                                ]), tensor_array_ops.TensorArray,
         structure.TensorArrayStructure(
             dtypes.int32, [2, 2], dynamic_size=True, infer_shape=None)),
        ("TensorArray_2", dtypes.int32,
         tensor_shape.as_shape([True, False, 2, 2
                                ]), tensor_array_ops.TensorArray,
         structure.TensorArrayStructure(
             dtypes.int32, [2, 2], dynamic_size=True, infer_shape=False)),
        ("RaggedTensor", dtypes.int32, tensor_shape.matrix(2, None),
         structure.RaggedTensorStructure(dtypes.int32, [2, None], 1),
         structure.RaggedTensorStructure(dtypes.int32, [2, None], 1)),
        ("Nested", {
            "a": dtypes.float32,
            "b": (dtypes.int32, dtypes.string)
        }, {
            "a": tensor_shape.scalar(),
            "b": (tensor_shape.matrix(2, 2), tensor_shape.scalar())
        }, {
            "a": ops.Tensor,
            "b": (sparse_tensor.SparseTensor, ops.Tensor)
        }, {
            "a":
            structure.TensorStructure(dtypes.float32, []),
            "b": (structure.SparseTensorStructure(dtypes.int32, [2, 2]),
                  structure.TensorStructure(dtypes.string, []))
        }),
    )
    def testConvertLegacyStructure(self, output_types, output_shapes,
                                   output_classes, expected_structure):
        actual_structure = structure.convert_legacy_structure(
            output_types, output_shapes, output_classes)
        self.assertEqual(actual_structure, expected_structure)

    def testNestedNestedStructure(self):
        s = (structure.TensorStructure(dtypes.int64, []),
             (structure.TensorStructure(dtypes.float32, []),
              structure.TensorStructure(dtypes.string, [])))

        int64_t = constant_op.constant(37, dtype=dtypes.int64)
        float32_t = constant_op.constant(42.0)
        string_t = constant_op.constant("Foo")

        nested_tensors = (int64_t, (float32_t, string_t))

        tensor_list = structure.to_tensor_list(s, nested_tensors)
        for expected, actual in zip([int64_t, float32_t, string_t],
                                    tensor_list):
            self.assertIs(expected, actual)

        (actual_int64_t,
         (actual_float32_t,
          actual_string_t)) = structure.from_tensor_list(s, tensor_list)
        self.assertIs(int64_t, actual_int64_t)
        self.assertIs(float32_t, actual_float32_t)
        self.assertIs(string_t, actual_string_t)

        (actual_int64_t,
         (actual_float32_t,
          actual_string_t)) = (structure.from_compatible_tensor_list(
              s, tensor_list))
        self.assertIs(int64_t, actual_int64_t)
        self.assertIs(float32_t, actual_float32_t)
        self.assertIs(string_t, actual_string_t)

    @parameterized.named_parameters(
        ("Tensor", structure.TensorStructure(dtypes.float32, []), 32,
         structure.TensorStructure(dtypes.float32, [32])),
        ("TensorUnknown", structure.TensorStructure(dtypes.float32, []), None,
         structure.TensorStructure(dtypes.float32, [None])),
        ("SparseTensor", structure.SparseTensorStructure(
            dtypes.float32, [None]), 32,
         structure.SparseTensorStructure(dtypes.float32, [32, None])),
        ("SparseTensorUnknown",
         structure.SparseTensorStructure(dtypes.float32, [4]), None,
         structure.SparseTensorStructure(dtypes.float32, [None, 4])),
        ("RaggedTensor",
         structure.RaggedTensorStructure(dtypes.float32, [2, None], 1), 32,
         structure.RaggedTensorStructure(dtypes.float32, [32, 2, None], 2)),
        ("RaggedTensorUnknown",
         structure.RaggedTensorStructure(dtypes.float32, [4, None], 1), None,
         structure.RaggedTensorStructure(dtypes.float32, [None, 4, None], 2)),
        ("Nested", {
            "a":
            structure.TensorStructure(dtypes.float32, []),
            "b": (structure.SparseTensorStructure(dtypes.int32, [2, 2]),
                  structure.TensorStructure(dtypes.string, []))
        }, 128, {
            "a":
            structure.TensorStructure(dtypes.float32, [128]),
            "b": (structure.SparseTensorStructure(dtypes.int32, [128, 2, 2]),
                  structure.TensorStructure(dtypes.string, [128]))
        }),
    )
    def testBatch(self, element_structure, batch_size,
                  expected_batched_structure):
        batched_structure = nest.map_structure(
            lambda component_spec: component_spec._batch(batch_size),
            element_structure)
        self.assertEqual(batched_structure, expected_batched_structure)

    @parameterized.named_parameters(
        ("Tensor", structure.TensorStructure(dtypes.float32, [32]),
         structure.TensorStructure(dtypes.float32, [])),
        ("TensorUnknown", structure.TensorStructure(dtypes.float32, [None]),
         structure.TensorStructure(dtypes.float32, [])),
        ("SparseTensor",
         structure.SparseTensorStructure(dtypes.float32, [32, None]),
         structure.SparseTensorStructure(dtypes.float32, [None])),
        ("SparseTensorUnknown",
         structure.SparseTensorStructure(dtypes.float32, [None, 4]),
         structure.SparseTensorStructure(dtypes.float32, [4])),
        ("RaggedTensor",
         structure.RaggedTensorStructure(dtypes.float32, [32, None, None], 2),
         structure.RaggedTensorStructure(dtypes.float32, [None, None], 1)),
        ("RaggedTensorUnknown",
         structure.RaggedTensorStructure(dtypes.float32, [None, None, None],
                                         2),
         structure.RaggedTensorStructure(dtypes.float32, [None, None], 1)),
        ("Nested", {
            "a":
            structure.TensorStructure(dtypes.float32, [128]),
            "b": (structure.SparseTensorStructure(dtypes.int32, [128, 2, 2]),
                  structure.TensorStructure(dtypes.string, [None]))
        }, {
            "a":
            structure.TensorStructure(dtypes.float32, []),
            "b": (structure.SparseTensorStructure(dtypes.int32, [2, 2]),
                  structure.TensorStructure(dtypes.string, []))
        }),
    )
    def testUnbatch(self, element_structure, expected_unbatched_structure):
        unbatched_structure = nest.map_structure(
            lambda component_spec: component_spec._unbatch(),
            element_structure)
        self.assertEqual(unbatched_structure, expected_unbatched_structure)

    # pylint: disable=g-long-lambda
    @parameterized.named_parameters(
        ("Tensor", lambda: constant_op.constant([[1.0, 2.0], [3.0, 4.0]]),
         lambda: constant_op.constant([1.0, 2.0])),
        ("SparseTensor", lambda: sparse_tensor.SparseTensor(
            indices=[[0, 0], [1, 1]], values=[13, 27], dense_shape=[2, 2]),
         lambda: sparse_tensor.SparseTensor(
             indices=[[0]], values=[13], dense_shape=[2])),
        ("RaggedTensor", lambda: ragged_factory_ops.constant([[[1]], [[2]]]),
         lambda: ragged_factory_ops.constant([[1]])),
        ("Nest", lambda:
         (constant_op.constant([[1.0, 2.0], [3.0, 4.0]]),
          sparse_tensor.SparseTensor(
              indices=[[0, 0], [1, 1]], values=[13, 27], dense_shape=[2, 2])),
         lambda: (constant_op.constant([1.0, 2.0]),
                  sparse_tensor.SparseTensor(
                      indices=[[0]], values=[13], dense_shape=[2]))),
    )
    def testToBatchedTensorList(self, value_fn, element_0_fn):
        batched_value = value_fn()
        s = structure.type_spec_from_value(batched_value)
        batched_tensor_list = structure.to_batched_tensor_list(
            s, batched_value)

        # The batch dimension is 2 for all of the test cases.
        # NOTE(mrry): `tf.shape()` does not currently work for the DT_VARIANT
        # tensors in which we store sparse tensors.
        for t in batched_tensor_list:
            if t.dtype != dtypes.variant:
                self.assertEqual(2, self.evaluate(array_ops.shape(t)[0]))

        # Test that the 0th element from the unbatched tensor is equal to the
        # expected value.
        expected_element_0 = self.evaluate(element_0_fn())
        unbatched_s = nest.map_structure(
            lambda component_spec: component_spec._unbatch(), s)
        actual_element_0 = structure.from_tensor_list(
            unbatched_s, [t[0] for t in batched_tensor_list])

        for expected, actual in zip(nest.flatten(expected_element_0),
                                    nest.flatten(actual_element_0)):
            self.assertValuesEqual(expected, actual)
class StructureTest(test_base.DatasetTestBase, parameterized.TestCase):

    # NOTE(mrry): The arguments must be lifted into lambdas because otherwise they
    # will be executed before the (eager- or graph-mode) test environment has been
    # set up.
    # pylint: disable=g-long-lambda,protected-access
    @parameterized.parameters(
        (lambda: constant_op.constant(37.0), structure.TensorStructure,
         [dtypes.float32], [[]]),
        (lambda: tensor_array_ops.TensorArray(
            dtype=dtypes.float32, element_shape=(3, ), size=0),
         structure.TensorArrayStructure, [dtypes.variant], [None, 3]),
        (lambda: sparse_tensor.SparseTensor(
            indices=[[3, 4]], values=[-1], dense_shape=[4, 5]),
         structure.SparseTensorStructure, [dtypes.variant], [None]),
        (lambda: (constant_op.constant(37.0), constant_op.constant([1, 2, 3])),
         structure.NestedStructure, [dtypes.float32, dtypes.int32], [[], [3]]),
        (lambda: {
            "a": constant_op.constant(37.0),
            "b": constant_op.constant([1, 2, 3])
        }, structure.NestedStructure, [dtypes.float32, dtypes.int32], [[], [3]
                                                                       ]),
        (lambda: {
            "a":
            constant_op.constant(37.0),
            "b":
            (sparse_tensor.
             SparseTensor(indices=[[0, 0]], values=[1], dense_shape=[1, 1]),
             sparse_tensor.SparseTensor(
                 indices=[[3, 4]], values=[-1], dense_shape=[4, 5]))
        }, structure.NestedStructure,
         [dtypes.float32, dtypes.variant, dtypes.variant], [[], None, None]))
    def testFlatStructure(self, value_fn, expected_structure, expected_types,
                          expected_shapes):
        value = value_fn()
        s = structure.Structure.from_value(value)
        self.assertIsInstance(s, expected_structure)
        self.assertEqual(expected_types, s._flat_types)
        for expected, actual in zip(expected_shapes, s._flat_shapes):
            self.assertTrue(actual.is_compatible_with(expected))
            self.assertTrue(
                tensor_shape.as_shape(expected).is_compatible_with(actual))

    @parameterized.parameters(
        (lambda: constant_op.constant(37.0), lambda: [
            constant_op.constant(38.0),
            array_ops.placeholder(dtypes.float32),
            variables.Variable(100.0), 42.0,
            np.array(42.0, dtype=np.float32)
        ],
         lambda: [constant_op.constant([1.0, 2.0]),
                  constant_op.constant(37)]),
        (lambda: tensor_array_ops.TensorArray(
            dtype=dtypes.float32, element_shape=(3, ), size=0), lambda: [
                tensor_array_ops.TensorArray(
                    dtype=dtypes.float32, element_shape=(3, ), size=0),
                tensor_array_ops.TensorArray(
                    dtype=dtypes.float32, element_shape=(3, ), size=10)
            ], lambda: [
                tensor_array_ops.TensorArray(
                    dtype=dtypes.int32, element_shape=(3, ), size=0),
                tensor_array_ops.TensorArray(
                    dtype=dtypes.float32, element_shape=(), size=0)
            ]),
        (lambda: sparse_tensor.SparseTensor(
            indices=[[3, 4]], values=[-1], dense_shape=[4, 5]), lambda: [
                sparse_tensor.SparseTensor(indices=[[1, 1], [3, 4]],
                                           values=[10, -1],
                                           dense_shape=[4, 5]),
                sparse_tensor.SparseTensorValue(indices=[[1, 1], [3, 4]],
                                                values=[10, -1],
                                                dense_shape=[4, 5]),
                array_ops.sparse_placeholder(dtype=dtypes.int32),
                array_ops.sparse_placeholder(dtype=dtypes.int32,
                                             shape=[None, None])
            ], lambda: [
                constant_op.constant(37, shape=[4, 5]),
                sparse_tensor.SparseTensor(
                    indices=[[3, 4]], values=[-1], dense_shape=[5, 6]),
                array_ops.sparse_placeholder(dtype=dtypes.int32,
                                             shape=[None, None, None]),
                sparse_tensor.SparseTensor(
                    indices=[[3, 4]], values=[-1.0], dense_shape=[4, 5])
            ]),
        (lambda: {
            "a": constant_op.constant(37.0),
            "b": constant_op.constant([1, 2, 3])
        }, lambda: [{
            "a": constant_op.constant(15.0),
            "b": constant_op.constant([4, 5, 6])
        }], lambda: [{
            "a": constant_op.constant(15.0),
            "b": constant_op.constant([4, 5, 6, 7])
        }, {
            "a": constant_op.constant(15),
            "b": constant_op.constant([4, 5, 6])
        }, {
            "a":
            constant_op.constant(15),
            "b":
            sparse_tensor.SparseTensor(
                indices=[[0], [1], [2]], values=[4, 5, 6], dense_shape=[3])
        }, (constant_op.constant(15.0), constant_op.constant([4, 5, 6]))]),
    )
    @test_util.run_deprecated_v1
    def testIsCompatibleWithStructure(self, original_value_fn,
                                      compatible_values_fn,
                                      incompatible_values_fn):
        original_value = original_value_fn()
        compatible_values = compatible_values_fn()
        incompatible_values = incompatible_values_fn()
        s = structure.Structure.from_value(original_value)
        for compatible_value in compatible_values:
            self.assertTrue(
                s.is_compatible_with(
                    structure.Structure.from_value(compatible_value)))
        for incompatible_value in incompatible_values:
            self.assertFalse(
                s.is_compatible_with(
                    structure.Structure.from_value(incompatible_value)))

    @parameterized.parameters(
        (lambda: constant_op.constant(37.0), ),
        (lambda: sparse_tensor.SparseTensor(
            indices=[[3, 4]], values=[-1], dense_shape=[4, 5]), ),
        (lambda: tensor_array_ops.TensorArray(
            dtype=dtypes.float32, element_shape=(), size=1).write(0, 7)),
        (lambda: {
            "a": constant_op.constant(37.0),
            "b": constant_op.constant([1, 2, 3])
        }, ),
        (lambda: {
            "a":
            constant_op.constant(37.0),
            "b":
            (sparse_tensor.
             SparseTensor(indices=[[0, 0]], values=[1], dense_shape=[1, 1]),
             sparse_tensor.SparseTensor(
                 indices=[[3, 4]], values=[-1], dense_shape=[4, 5]))
        }, ),
    )
    def testRoundTripConversion(self, value_fn):
        value = value_fn()
        s = structure.Structure.from_value(value)

        def maybe_stack_ta(v):
            if isinstance(v, tensor_array_ops.TensorArray):
                return v.stack()
            else:
                return v

        before = self.evaluate(maybe_stack_ta(value))
        after = self.evaluate(
            maybe_stack_ta(s._from_tensor_list(s._to_tensor_list(value))))

        flat_before = nest.flatten(before)
        flat_after = nest.flatten(after)
        for b, a in zip(flat_before, flat_after):
            if isinstance(b, sparse_tensor.SparseTensorValue):
                self.assertAllEqual(b.indices, a.indices)
                self.assertAllEqual(b.values, a.values)
                self.assertAllEqual(b.dense_shape, a.dense_shape)
            else:
                self.assertAllEqual(b, a)

    # pylint: enable=g-long-lambda

    def testIncompatibleStructure(self):
        # Define three mutually incompatible values/structures, and assert that:
        # 1. Using one structure to flatten a value with an incompatible structure
        #    fails.
        # 2. Using one structure to restructre a flattened value with an
        #    incompatible structure fails.
        value_tensor = constant_op.constant(42.0)
        s_tensor = structure.Structure.from_value(value_tensor)
        flat_tensor = s_tensor._to_tensor_list(value_tensor)

        value_sparse_tensor = sparse_tensor.SparseTensor(indices=[[0, 0]],
                                                         values=[1],
                                                         dense_shape=[1, 1])
        s_sparse_tensor = structure.Structure.from_value(value_sparse_tensor)
        flat_sparse_tensor = s_sparse_tensor._to_tensor_list(
            value_sparse_tensor)

        value_nest = {
            "a": constant_op.constant(37.0),
            "b": constant_op.constant([1, 2, 3])
        }
        s_nest = structure.Structure.from_value(value_nest)
        flat_nest = s_nest._to_tensor_list(value_nest)

        with self.assertRaisesRegexp(
                ValueError,
                r"SparseTensor.* is not convertible to a tensor with "
                r"dtype.*float32.* and shape \(\)"):
            s_tensor._to_tensor_list(value_sparse_tensor)
        with self.assertRaisesRegexp(
                ValueError,
                r"Value \{.*\} is not convertible to a tensor with "
                r"dtype.*float32.* and shape \(\)"):
            s_tensor._to_tensor_list(value_nest)

        with self.assertRaisesRegexp(TypeError,
                                     "Input must be a SparseTensor"):
            s_sparse_tensor._to_tensor_list(value_tensor)

        with self.assertRaisesRegexp(TypeError,
                                     "Input must be a SparseTensor"):
            s_sparse_tensor._to_tensor_list(value_nest)

        with self.assertRaisesRegexp(
                ValueError,
                "Tensor.* not compatible with the nested structure "
                ".*TensorStructure.*TensorStructure"):
            s_nest._to_tensor_list(value_tensor)

        with self.assertRaisesRegexp(
                ValueError,
                "SparseTensor.* not compatible with the nested structure "
                ".*TensorStructure.*TensorStructure"):
            s_nest._to_tensor_list(value_sparse_tensor)

        with self.assertRaisesRegexp(
                ValueError,
                r"Cannot convert.*with dtype.*float32.* and shape \(\)"):
            s_tensor._from_tensor_list(flat_sparse_tensor)

        with self.assertRaisesRegexp(
                ValueError,
                "TensorStructure corresponds to a single tf.Tensor."):
            s_tensor._from_tensor_list(flat_nest)

        with self.assertRaisesRegexp(
                ValueError,
                "SparseTensorStructure corresponds to a single tf.variant "
                "vector of length 3."):
            s_sparse_tensor._from_tensor_list(flat_tensor)

        with self.assertRaisesRegexp(
                ValueError,
                "SparseTensorStructure corresponds to a single tf.variant "
                "vector of length 3."):
            s_sparse_tensor._from_tensor_list(flat_nest)

        with self.assertRaisesRegexp(
                ValueError,
                "Expected 2 flat values in NestedStructure but got 1."):
            s_nest._from_tensor_list(flat_tensor)

        with self.assertRaisesRegexp(
                ValueError,
                "Expected 2 flat values in NestedStructure but got 1."):
            s_nest._from_tensor_list(flat_sparse_tensor)

    def testIncompatibleNestedStructure(self):
        # Define three mutually incompatible nested values/structures, and assert
        # that:
        # 1. Using one structure to flatten a value with an incompatible structure
        #    fails.
        # 2. Using one structure to restructre a flattened value with an
        #    incompatible structure fails.

        value_0 = {
            "a": constant_op.constant(37.0),
            "b": constant_op.constant([1, 2, 3])
        }
        s_0 = structure.Structure.from_value(value_0)
        flat_s_0 = s_0._to_tensor_list(value_0)

        # `value_1` has compatible nested structure with `value_0`, but different
        # classes.
        value_1 = {
            "a":
            constant_op.constant(37.0),
            "b":
            sparse_tensor.SparseTensor(indices=[[0, 0]],
                                       values=[1],
                                       dense_shape=[1, 1])
        }
        s_1 = structure.Structure.from_value(value_1)
        flat_s_1 = s_1._to_tensor_list(value_1)

        # `value_2` has incompatible nested structure with `value_0` and `value_1`.
        value_2 = {
            "a":
            constant_op.constant(37.0),
            "b": (sparse_tensor.SparseTensor(indices=[[0, 0]],
                                             values=[1],
                                             dense_shape=[1, 1]),
                  sparse_tensor.SparseTensor(indices=[[3, 4]],
                                             values=[-1],
                                             dense_shape=[4, 5]))
        }
        s_2 = structure.Structure.from_value(value_2)
        flat_s_2 = s_2._to_tensor_list(value_2)

        with self.assertRaisesRegexp(
                ValueError,
                "SparseTensor.* not compatible with the nested structure "
                ".*TensorStructure"):
            s_0._to_tensor_list(value_1)

        with self.assertRaisesRegexp(
                ValueError,
                "SparseTensor.*SparseTensor.* not compatible with the "
                "nested structure .*TensorStructure"):
            s_0._to_tensor_list(value_2)

        with self.assertRaisesRegexp(
                ValueError,
                "Tensor.* not compatible with the nested structure "
                ".*SparseTensorStructure"):
            s_1._to_tensor_list(value_0)

        with self.assertRaisesRegexp(
                ValueError,
                "SparseTensor.*SparseTensor.* not compatible with the "
                "nested structure .*TensorStructure"):
            s_0._to_tensor_list(value_2)

        # NOTE(mrry): The repr of the dictionaries is not sorted, so the regexp
        # needs to account for "a" coming before or after "b". It might be worth
        # adding a deterministic repr for these error messages (among other
        # improvements).
        with self.assertRaisesRegexp(
                ValueError,
                "Tensor.*Tensor.* not compatible with the nested structure "
                ".*(TensorStructure.*SparseTensorStructure.*SparseTensorStructure|"
                "SparseTensorStructure.*SparseTensorStructure.*TensorStructure)"
        ):
            s_2._to_tensor_list(value_0)

        with self.assertRaisesRegexp(
                ValueError, "(Tensor.*SparseTensor|SparseTensor.*Tensor).* "
                "not compatible with the nested structure .*"
                "(TensorStructure.*SparseTensorStructure.*SparseTensorStructure|"
                "SparseTensorStructure.*SparseTensorStructure.*TensorStructure)"
        ):
            s_2._to_tensor_list(value_1)

        with self.assertRaisesRegexp(
                ValueError,
                r"Cannot convert.*with dtype.*int32.* and shape \(3,\)"):
            s_0._from_tensor_list(flat_s_1)

        with self.assertRaisesRegexp(
                ValueError,
                "Expected 2 flat values in NestedStructure but got 3."):
            s_0._from_tensor_list(flat_s_2)

        with self.assertRaisesRegexp(
                ValueError,
                "SparseTensorStructure corresponds to a single tf.variant "
                "vector of length 3."):
            s_1._from_tensor_list(flat_s_0)

        with self.assertRaisesRegexp(
                ValueError,
                "Expected 2 flat values in NestedStructure but got 3."):
            s_1._from_tensor_list(flat_s_2)

        with self.assertRaisesRegexp(
                ValueError,
                "Expected 3 flat values in NestedStructure but got 2."):
            s_2._from_tensor_list(flat_s_0)

        with self.assertRaisesRegexp(
                ValueError,
                "Expected 3 flat values in NestedStructure but got 2."):
            s_2._from_tensor_list(flat_s_1)

    @parameterized.named_parameters(
        ("Tensor", dtypes.float32, tensor_shape.scalar(), ops.Tensor,
         structure.TensorStructure(dtypes.float32, [])),
        ("SparseTensor", dtypes.int32, tensor_shape.matrix(
            2, 2), sparse_tensor.SparseTensor,
         structure.SparseTensorStructure(dtypes.int32, [2, 2])),
        ("TensorArray0", dtypes.int32, tensor_shape.as_shape(
            [None, True, 2, 2]), tensor_array_ops.TensorArray,
         structure.TensorArrayStructure(
             dtypes.int32, [2, 2], dynamic_size=None, infer_shape=True)),
        ("TensorArray1", dtypes.int32, tensor_shape.as_shape(
            [True, None, 2, 2]), tensor_array_ops.TensorArray,
         structure.TensorArrayStructure(
             dtypes.int32, [2, 2], dynamic_size=True, infer_shape=None)),
        ("TensorArray2", dtypes.int32,
         tensor_shape.as_shape([True, False, 2, 2
                                ]), tensor_array_ops.TensorArray,
         structure.TensorArrayStructure(
             dtypes.int32, [2, 2], dynamic_size=True, infer_shape=False)),
        ("Nest", {
            "a": dtypes.float32,
            "b": (dtypes.int32, dtypes.string)
        }, {
            "a": tensor_shape.scalar(),
            "b": (tensor_shape.matrix(2, 2), tensor_shape.scalar())
        }, {
            "a": ops.Tensor,
            "b": (sparse_tensor.SparseTensor, ops.Tensor)
        },
         structure.NestedStructure({
             "a":
             structure.TensorStructure(dtypes.float32, []),
             "b": (structure.SparseTensorStructure(dtypes.int32, [2, 2]),
                   structure.TensorStructure(dtypes.string, []))
         })),
    )
    def testConvertLegacyStructure(self, output_types, output_shapes,
                                   output_classes, expected_structure):
        actual_structure = structure.convert_legacy_structure(
            output_types, output_shapes, output_classes)
        self.assertTrue(
            expected_structure.is_compatible_with(actual_structure))
        self.assertTrue(
            actual_structure.is_compatible_with(expected_structure))

    def testNestedNestedStructure(self):
        # Although `Structure.from_value()` will not construct one, a nested
        # structure containing nested `NestedStructure` objects can occur if a
        # structure is constructed manually.
        s = structure.NestedStructure(
            (structure.TensorStructure(dtypes.int64, []),
             structure.NestedStructure(
                 (structure.TensorStructure(dtypes.float32, []),
                  structure.TensorStructure(dtypes.string, [])))))

        int64_t = constant_op.constant(37, dtype=dtypes.int64)
        float32_t = constant_op.constant(42.0)
        string_t = constant_op.constant("Foo")

        nested_tensors = (int64_t, (float32_t, string_t))

        tensor_list = s._to_tensor_list(nested_tensors)
        for expected, actual in zip([int64_t, float32_t, string_t],
                                    tensor_list):
            self.assertIs(expected, actual)

        (actual_int64_t, (actual_float32_t,
                          actual_string_t)) = s._from_tensor_list(tensor_list)
        self.assertIs(int64_t, actual_int64_t)
        self.assertIs(float32_t, actual_float32_t)
        self.assertIs(string_t, actual_string_t)

        (actual_int64_t,
         (actual_float32_t,
          actual_string_t)) = (s._from_compatible_tensor_list(tensor_list))
        self.assertIs(int64_t, actual_int64_t)
        self.assertIs(float32_t, actual_float32_t)
        self.assertIs(string_t, actual_string_t)

    @parameterized.named_parameters(
        ("Tensor", structure.TensorStructure(dtypes.float32, []), 32,
         structure.TensorStructure(dtypes.float32, [32])),
        ("TensorUnknown", structure.TensorStructure(dtypes.float32, []), None,
         structure.TensorStructure(dtypes.float32, [None])),
        ("SparseTensor", structure.SparseTensorStructure(
            dtypes.float32, [None]), 32,
         structure.SparseTensorStructure(dtypes.float32, [32, None])),
        ("SparseTensorUnknown",
         structure.SparseTensorStructure(dtypes.float32, [4]), None,
         structure.SparseTensorStructure(dtypes.float32, [None, 4])),
        ("Nest",
         structure.NestedStructure({
             "a":
             structure.TensorStructure(dtypes.float32, []),
             "b": (structure.SparseTensorStructure(dtypes.int32, [2, 2]),
                   structure.TensorStructure(dtypes.string, []))
         }), 128,
         structure.NestedStructure({
             "a":
             structure.TensorStructure(dtypes.float32, [128]),
             "b": (structure.SparseTensorStructure(dtypes.int32, [128, 2, 2]),
                   structure.TensorStructure(dtypes.string, [128]))
         })),
    )
    def testBatch(self, element_structure, batch_size,
                  expected_batched_structure):
        batched_structure = element_structure._batch(batch_size)
        self.assertTrue(
            batched_structure.is_compatible_with(expected_batched_structure))
        self.assertTrue(
            expected_batched_structure.is_compatible_with(batched_structure))

    @parameterized.named_parameters(
        ("Tensor", structure.TensorStructure(dtypes.float32, [32]),
         structure.TensorStructure(dtypes.float32, [])),
        ("TensorUnknown", structure.TensorStructure(dtypes.float32, [None]),
         structure.TensorStructure(dtypes.float32, [])),
        ("SparseTensor",
         structure.SparseTensorStructure(dtypes.float32, [32, None]),
         structure.SparseTensorStructure(dtypes.float32, [None])),
        ("SparseTensorUnknown",
         structure.SparseTensorStructure(dtypes.float32, [None, 4]),
         structure.SparseTensorStructure(dtypes.float32, [4])),
        ("Nest",
         structure.NestedStructure({
             "a":
             structure.TensorStructure(dtypes.float32, [128]),
             "b": (structure.SparseTensorStructure(dtypes.int32, [128, 2, 2]),
                   structure.TensorStructure(dtypes.string, [None]))
         }),
         structure.NestedStructure({
             "a":
             structure.TensorStructure(dtypes.float32, []),
             "b": (structure.SparseTensorStructure(dtypes.int32, [2, 2]),
                   structure.TensorStructure(dtypes.string, []))
         })),
    )
    def testUnbatch(self, element_structure, expected_unbatched_structure):
        unbatched_structure = element_structure._unbatch()
        self.assertTrue(
            unbatched_structure.is_compatible_with(
                expected_unbatched_structure))
        self.assertTrue(
            expected_unbatched_structure.is_compatible_with(
                unbatched_structure))

    # pylint: disable=g-long-lambda
    @parameterized.named_parameters(
        ("Tensor", lambda: constant_op.constant([[1.0, 2.0], [3.0, 4.0]]),
         lambda: constant_op.constant([1.0, 2.0])),
        ("SparseTensor", lambda: sparse_tensor.SparseTensor(
            indices=[[0, 0], [1, 1]], values=[13, 27], dense_shape=[2, 2]),
         lambda: sparse_tensor.SparseTensor(
             indices=[[0]], values=[13], dense_shape=[2])),
        ("Nest", lambda:
         (constant_op.constant([[1.0, 2.0], [3.0, 4.0]]),
          sparse_tensor.SparseTensor(
              indices=[[0, 0], [1, 1]], values=[13, 27], dense_shape=[2, 2])),
         lambda: (constant_op.constant([1.0, 2.0]),
                  sparse_tensor.SparseTensor(
                      indices=[[0]], values=[13], dense_shape=[2]))),
    )
    def testToBatchedTensorList(self, value_fn, element_0_fn):
        batched_value = value_fn()
        s = structure.Structure.from_value(batched_value)
        batched_tensor_list = s._to_batched_tensor_list(batched_value)

        # The batch dimension is 2 for all of the test cases.
        # NOTE(mrry): `tf.shape()` does not currently work for the DT_VARIANT
        # tensors in which we store sparse tensors.
        for t in batched_tensor_list:
            if t.dtype != dtypes.variant:
                self.assertEqual(2, self.evaluate(array_ops.shape(t)[0]))

        # Test that the 0th element from the unbatched tensor is equal to the
        # expected value.
        expected_element_0 = self.evaluate(element_0_fn())
        unbatched_s = s._unbatch()
        actual_element_0 = unbatched_s._from_tensor_list(
            [t[0] for t in batched_tensor_list])

        for expected, actual in zip(nest.flatten(expected_element_0),
                                    nest.flatten(actual_element_0)):
            if sparse_tensor.is_sparse(expected):
                self.assertSparseValuesEqual(expected, actual)
            else:
                self.assertAllEqual(expected, actual)
Exemple #3
0
class StructureTest(test.TestCase, parameterized.TestCase):

    # NOTE(mrry): The arguments must be lifted into lambdas because otherwise they
    # will be executed before the (eager- or graph-mode) test environment has been
    # set up.
    # pylint: disable=g-long-lambda,protected-access
    @parameterized.parameters(
        (lambda: constant_op.constant(37.0), structure.TensorStructure,
         [dtypes.float32], [[]]),
        (lambda: tensor_array_ops.TensorArray(
            dtype=dtypes.float32, element_shape=(3, ), size=0),
         structure.TensorArrayStructure, [dtypes.variant], [None, 3]),
        (lambda: sparse_tensor.SparseTensor(
            indices=[[3, 4]], values=[-1], dense_shape=[4, 5]),
         structure.SparseTensorStructure, [dtypes.variant], [[3]]),
        (lambda: (constant_op.constant(37.0), constant_op.constant([1, 2, 3])),
         structure.NestedStructure, [dtypes.float32, dtypes.int32], [[], [3]]),
        (lambda: {
            "a": constant_op.constant(37.0),
            "b": constant_op.constant([1, 2, 3])
        }, structure.NestedStructure, [dtypes.float32, dtypes.int32], [[], [3]
                                                                       ]),
        (lambda: {
            "a":
            constant_op.constant(37.0),
            "b":
            (sparse_tensor.
             SparseTensor(indices=[[0, 0]], values=[1], dense_shape=[1, 1]),
             sparse_tensor.SparseTensor(
                 indices=[[3, 4]], values=[-1], dense_shape=[4, 5]))
        }, structure.NestedStructure,
         [dtypes.float32, dtypes.variant, dtypes.variant], [[], [3], [3]]))
    def testFlatStructure(self, value_fn, expected_structure, expected_types,
                          expected_shapes):
        value = value_fn()
        s = structure.Structure.from_value(value)
        self.assertIsInstance(s, expected_structure)
        self.assertEqual(expected_types, s._flat_types)
        self.assertEqual(expected_shapes, s._flat_shapes)

    @parameterized.parameters(
        (lambda: constant_op.constant(37.0), lambda: [
            constant_op.constant(38.0),
            array_ops.placeholder(dtypes.float32),
            variables.Variable(100.0), 42.0,
            np.array(42.0, dtype=np.float32)
        ],
         lambda: [constant_op.constant([1.0, 2.0]),
                  constant_op.constant(37)]),
        (lambda: tensor_array_ops.TensorArray(
            dtype=dtypes.float32, element_shape=(3, ), size=0), lambda: [
                tensor_array_ops.TensorArray(
                    dtype=dtypes.float32, element_shape=(3, ), size=0),
                tensor_array_ops.TensorArray(
                    dtype=dtypes.float32, element_shape=(3, ), size=10)
            ], lambda: [
                tensor_array_ops.TensorArray(
                    dtype=dtypes.int32, element_shape=(3, ), size=0),
                tensor_array_ops.TensorArray(
                    dtype=dtypes.float32, element_shape=(), size=0)
            ]),
        (lambda: sparse_tensor.SparseTensor(
            indices=[[3, 4]], values=[-1], dense_shape=[4, 5]), lambda: [
                sparse_tensor.SparseTensor(indices=[[1, 1], [3, 4]],
                                           values=[10, -1],
                                           dense_shape=[4, 5]),
                sparse_tensor.SparseTensorValue(indices=[[1, 1], [3, 4]],
                                                values=[10, -1],
                                                dense_shape=[4, 5]),
                array_ops.sparse_placeholder(dtype=dtypes.int32),
                array_ops.sparse_placeholder(dtype=dtypes.int32,
                                             shape=[None, None])
            ], lambda: [
                constant_op.constant(37, shape=[4, 5]),
                sparse_tensor.SparseTensor(
                    indices=[[3, 4]], values=[-1], dense_shape=[5, 6]),
                array_ops.sparse_placeholder(dtype=dtypes.int32,
                                             shape=[None, None, None]),
                sparse_tensor.SparseTensor(
                    indices=[[3, 4]], values=[-1.0], dense_shape=[4, 5])
            ]),
        (lambda: {
            "a": constant_op.constant(37.0),
            "b": constant_op.constant([1, 2, 3])
        }, lambda: [{
            "a": constant_op.constant(15.0),
            "b": constant_op.constant([4, 5, 6])
        }], lambda: [{
            "a": constant_op.constant(15.0),
            "b": constant_op.constant([4, 5, 6, 7])
        }, {
            "a": constant_op.constant(15),
            "b": constant_op.constant([4, 5, 6])
        }, {
            "a":
            constant_op.constant(15),
            "b":
            sparse_tensor.SparseTensor(
                indices=[[0], [1], [2]], values=[4, 5, 6], dense_shape=[3])
        }, (constant_op.constant(15.0), constant_op.constant([4, 5, 6]))]),
    )
    def testIsCompatibleWithStructure(self, original_value_fn,
                                      compatible_values_fn,
                                      incompatible_values_fn):
        original_value = original_value_fn()
        compatible_values = compatible_values_fn()
        incompatible_values = incompatible_values_fn()
        s = structure.Structure.from_value(original_value)
        for compatible_value in compatible_values:
            self.assertTrue(
                s.is_compatible_with(
                    structure.Structure.from_value(compatible_value)))
        for incompatible_value in incompatible_values:
            self.assertFalse(
                s.is_compatible_with(
                    structure.Structure.from_value(incompatible_value)))

    @parameterized.parameters(
        (lambda: constant_op.constant(37.0), ),
        (lambda: sparse_tensor.SparseTensor(
            indices=[[3, 4]], values=[-1], dense_shape=[4, 5]), ),
        (lambda: tensor_array_ops.TensorArray(
            dtype=dtypes.float32, element_shape=(), size=1).write(0, 7)),
        (lambda: {
            "a": constant_op.constant(37.0),
            "b": constant_op.constant([1, 2, 3])
        }, ),
        (lambda: {
            "a":
            constant_op.constant(37.0),
            "b":
            (sparse_tensor.
             SparseTensor(indices=[[0, 0]], values=[1], dense_shape=[1, 1]),
             sparse_tensor.SparseTensor(
                 indices=[[3, 4]], values=[-1], dense_shape=[4, 5]))
        }, ),
    )
    def testRoundTripConversion(self, value_fn):
        value = value_fn()
        s = structure.Structure.from_value(value)

        def maybe_stack_ta(v):
            if isinstance(v, tensor_array_ops.TensorArray):
                return v.stack()
            else:
                return v

        before = self.evaluate(maybe_stack_ta(value))
        after = self.evaluate(
            maybe_stack_ta(s._from_tensor_list(s._to_tensor_list(value))))

        flat_before = nest.flatten(before)
        flat_after = nest.flatten(after)
        for b, a in zip(flat_before, flat_after):
            if isinstance(b, sparse_tensor.SparseTensorValue):
                self.assertAllEqual(b.indices, a.indices)
                self.assertAllEqual(b.values, a.values)
                self.assertAllEqual(b.dense_shape, a.dense_shape)
            else:
                self.assertAllEqual(b, a)

    # pylint: enable=g-long-lambda

    def testIncompatibleStructure(self):
        # Define three mutually incompatible values/structures, and assert that:
        # 1. Using one structure to flatten a value with an incompatible structure
        #    fails.
        # 2. Using one structure to restructre a flattened value with an
        #    incompatible structure fails.
        value_tensor = constant_op.constant(42.0)
        s_tensor = structure.Structure.from_value(value_tensor)
        flat_tensor = s_tensor._to_tensor_list(value_tensor)

        value_sparse_tensor = sparse_tensor.SparseTensor(indices=[[0, 0]],
                                                         values=[1],
                                                         dense_shape=[1, 1])
        s_sparse_tensor = structure.Structure.from_value(value_sparse_tensor)
        flat_sparse_tensor = s_sparse_tensor._to_tensor_list(
            value_sparse_tensor)

        value_nest = {
            "a": constant_op.constant(37.0),
            "b": constant_op.constant([1, 2, 3])
        }
        s_nest = structure.Structure.from_value(value_nest)
        flat_nest = s_nest._to_tensor_list(value_nest)

        with self.assertRaisesRegexp(
                ValueError,
                r"SparseTensor.* is not convertible to a tensor with "
                r"dtype.*float32.* and shape \(\)"):
            s_tensor._to_tensor_list(value_sparse_tensor)
        with self.assertRaisesRegexp(
                ValueError,
                r"Value \{.*\} is not convertible to a tensor with "
                r"dtype.*float32.* and shape \(\)"):
            s_tensor._to_tensor_list(value_nest)

        with self.assertRaisesRegexp(TypeError,
                                     "Input must be a SparseTensor"):
            s_sparse_tensor._to_tensor_list(value_tensor)

        with self.assertRaisesRegexp(TypeError,
                                     "Input must be a SparseTensor"):
            s_sparse_tensor._to_tensor_list(value_nest)

        with self.assertRaisesRegexp(
                ValueError,
                "Tensor.* not compatible with the nested structure "
                ".*TensorStructure.*TensorStructure"):
            s_nest._to_tensor_list(value_tensor)

        with self.assertRaisesRegexp(
                ValueError,
                "SparseTensor.* not compatible with the nested structure "
                ".*TensorStructure.*TensorStructure"):
            s_nest._to_tensor_list(value_sparse_tensor)

        with self.assertRaisesRegexp(
                ValueError,
                r"Cannot convert.*with dtype.*float32.* and shape \(\)"):
            s_tensor._from_tensor_list(flat_sparse_tensor)

        with self.assertRaisesRegexp(
                ValueError,
                "TensorStructure corresponds to a single tf.Tensor."):
            s_tensor._from_tensor_list(flat_nest)

        with self.assertRaisesRegexp(
                ValueError,
                "SparseTensorStructure corresponds to a single tf.variant "
                "vector of length 3."):
            s_sparse_tensor._from_tensor_list(flat_tensor)

        with self.assertRaisesRegexp(
                ValueError,
                "SparseTensorStructure corresponds to a single tf.variant "
                "vector of length 3."):
            s_sparse_tensor._from_tensor_list(flat_nest)

        with self.assertRaisesRegexp(
                ValueError,
                "Expected 2 flat values in NestedStructure but got 1."):
            s_nest._from_tensor_list(flat_tensor)

        with self.assertRaisesRegexp(
                ValueError,
                "Expected 2 flat values in NestedStructure but got 1."):
            s_nest._from_tensor_list(flat_sparse_tensor)

    def testIncompatibleNestedStructure(self):
        # Define three mutually incompatible nested values/structures, and assert
        # that:
        # 1. Using one structure to flatten a value with an incompatible structure
        #    fails.
        # 2. Using one structure to restructre a flattened value with an
        #    incompatible structure fails.

        value_0 = {
            "a": constant_op.constant(37.0),
            "b": constant_op.constant([1, 2, 3])
        }
        s_0 = structure.Structure.from_value(value_0)
        flat_s_0 = s_0._to_tensor_list(value_0)

        # `value_1` has compatible nested structure with `value_0`, but different
        # classes.
        value_1 = {
            "a":
            constant_op.constant(37.0),
            "b":
            sparse_tensor.SparseTensor(indices=[[0, 0]],
                                       values=[1],
                                       dense_shape=[1, 1])
        }
        s_1 = structure.Structure.from_value(value_1)
        flat_s_1 = s_1._to_tensor_list(value_1)

        # `value_2` has incompatible nested structure with `value_0` and `value_1`.
        value_2 = {
            "a":
            constant_op.constant(37.0),
            "b": (sparse_tensor.SparseTensor(indices=[[0, 0]],
                                             values=[1],
                                             dense_shape=[1, 1]),
                  sparse_tensor.SparseTensor(indices=[[3, 4]],
                                             values=[-1],
                                             dense_shape=[4, 5]))
        }
        s_2 = structure.Structure.from_value(value_2)
        flat_s_2 = s_2._to_tensor_list(value_2)

        with self.assertRaisesRegexp(
                ValueError,
                "SparseTensor.* not compatible with the nested structure "
                ".*TensorStructure"):
            s_0._to_tensor_list(value_1)

        with self.assertRaisesRegexp(
                ValueError,
                "SparseTensor.*SparseTensor.* not compatible with the "
                "nested structure .*TensorStructure"):
            s_0._to_tensor_list(value_2)

        with self.assertRaisesRegexp(
                ValueError,
                "Tensor.* not compatible with the nested structure "
                ".*SparseTensorStructure"):
            s_1._to_tensor_list(value_0)

        with self.assertRaisesRegexp(
                ValueError,
                "SparseTensor.*SparseTensor.* not compatible with the "
                "nested structure .*TensorStructure"):
            s_0._to_tensor_list(value_2)

        # NOTE(mrry): The repr of the dictionaries is not sorted, so the regexp
        # needs to account for "a" coming before or after "b". It might be worth
        # adding a deterministic repr for these error messages (among other
        # improvements).
        with self.assertRaisesRegexp(
                ValueError,
                "Tensor.*Tensor.* not compatible with the nested structure "
                ".*(TensorStructure.*SparseTensorStructure.*SparseTensorStructure|"
                "SparseTensorStructure.*SparseTensorStructure.*TensorStructure)"
        ):
            s_2._to_tensor_list(value_0)

        with self.assertRaisesRegexp(
                ValueError, "(Tensor.*SparseTensor|SparseTensor.*Tensor).* "
                "not compatible with the nested structure .*"
                "(TensorStructure.*SparseTensorStructure.*SparseTensorStructure|"
                "SparseTensorStructure.*SparseTensorStructure.*TensorStructure)"
        ):
            s_2._to_tensor_list(value_1)

        with self.assertRaisesRegexp(
                ValueError,
                r"Cannot convert.*with dtype.*int32.* and shape \(3,\)"):
            s_0._from_tensor_list(flat_s_1)

        with self.assertRaisesRegexp(
                ValueError,
                "Expected 2 flat values in NestedStructure but got 3."):
            s_0._from_tensor_list(flat_s_2)

        with self.assertRaisesRegexp(
                ValueError,
                "SparseTensorStructure corresponds to a single tf.variant "
                "vector of length 3."):
            s_1._from_tensor_list(flat_s_0)

        with self.assertRaisesRegexp(
                ValueError,
                "Expected 2 flat values in NestedStructure but got 3."):
            s_1._from_tensor_list(flat_s_2)

        with self.assertRaisesRegexp(
                ValueError,
                "Expected 3 flat values in NestedStructure but got 2."):
            s_2._from_tensor_list(flat_s_0)

        with self.assertRaisesRegexp(
                ValueError,
                "Expected 3 flat values in NestedStructure but got 2."):
            s_2._from_tensor_list(flat_s_1)

    @parameterized.named_parameters(
        ("Tensor", dtypes.float32, tensor_shape.scalar(), ops.Tensor,
         structure.TensorStructure(dtypes.float32, [])),
        ("SparseTensor", dtypes.int32, tensor_shape.matrix(
            2, 2), sparse_tensor.SparseTensor,
         structure.SparseTensorStructure(dtypes.int32, [2, 2])),
        ("TensorArray0", dtypes.int32, tensor_shape.as_shape(
            [None, True, 2, 2]), tensor_array_ops.TensorArray,
         structure.TensorArrayStructure(
             dtypes.int32, [2, 2], dynamic_size=None, infer_shape=True)),
        ("TensorArray1", dtypes.int32, tensor_shape.as_shape(
            [True, None, 2, 2]), tensor_array_ops.TensorArray,
         structure.TensorArrayStructure(
             dtypes.int32, [2, 2], dynamic_size=True, infer_shape=None)),
        ("TensorArray2", dtypes.int32,
         tensor_shape.as_shape([True, False, 2, 2
                                ]), tensor_array_ops.TensorArray,
         structure.TensorArrayStructure(
             dtypes.int32, [2, 2], dynamic_size=True, infer_shape=False)),
        ("Nest", {
            "a": dtypes.float32,
            "b": (dtypes.int32, dtypes.string)
        }, {
            "a": tensor_shape.scalar(),
            "b": (tensor_shape.matrix(2, 2), tensor_shape.scalar())
        }, {
            "a": ops.Tensor,
            "b": (sparse_tensor.SparseTensor, ops.Tensor)
        },
         structure.NestedStructure({
             "a":
             structure.TensorStructure(dtypes.float32, []),
             "b": (structure.SparseTensorStructure(dtypes.int32, [2, 2]),
                   structure.TensorStructure(dtypes.string, []))
         })),
    )
    def testFromLegacyStructure(self, output_types, output_shapes,
                                output_classes, expected_structure):
        actual_structure = structure.Structure._from_legacy_structure(
            output_types, output_shapes, output_classes)
        self.assertTrue(
            expected_structure.is_compatible_with(actual_structure))
        self.assertTrue(
            actual_structure.is_compatible_with(expected_structure))