def train(self):
        logging.info('%s Setting up model directory ...' % self.stage)
        self.setup_model_dir()

        logging.info('%s Initializing logs ...' % self.stage)
        self.init_logs()

        logging.info('%s Creating training data ...' % self.stage)
        self.create_training_dataset()

        logging.info('%s Initializing model ...' % self.stage)
        self.init_model()

        logging.info('%s Setting up metrics ...' % self.stage)
        self.init_metrics()

        logging.info('%s Initializing face model ...' % self.stage)
        self.init_bfm()

        logging.info('%s Starting customized training ...' % self.stage)

        if self.enable_profiler:
            os.makedirs(os.path.join(self.summary_dir, 'profiler'))
            from tensorflow.python.eager import profiler
            profiler.start_profiler_server(6019)
        self.run_customized_training_steps()
Exemple #2
0
def main(**kwargs):
  """ Main function for training ESRGAN model and exporting it as a SavedModel2.0
      Args:
        config: path to config yaml file.
        log_dir: directory to store summary for tensorboard.
        data_dir: directory to store / access the dataset.
        manual: boolean to denote if data_dir is a manual directory.
        model_dir: directory to store the model into.
  """

  for physical_device in tf.config.experimental.list_physical_devices("GPU"):
    tf.config.experimental.set_memory_growth(physical_device, True)

  sett = settings.Settings(kwargs["config"])
  Stats = settings.Stats(os.path.join(sett.path, "stats.yaml"))
  summary_writer = tf.summary.create_file_writer(kwargs["log_dir"])
  profiler.start_profiler_server(6009)
  generator = model.RRDBNet(out_channel=3)
  discriminator = model.VGGArch()

  training = train.Trainer(
      summary_writer=summary_writer,
      settings=sett,
      data_dir=kwargs["data_dir"],
      manual=kwargs["manual"])
  phases = list(map(lambda x: x.strip(),
                    kwargs["phases"].lower().split("_")))

  if not Stats["train_step_1"] and "phase1" in phases:
    logging.info("starting phase 1")
    training.warmup_generator(generator)
    Stats["train_step_1"] = True
  if not Stats["train_step_2"] and "phase2" in phases:
    logging.info("starting phase 2")
    training.train_gan(generator, discriminator)
    Stats["train_step_2"] = True

  if Stats["train_step_1"] and Stats["train_step_2"]:
    # Attempting to save "Interpolated" Model as SavedModel2.0
    interpolated_generator = utils.interpolate_generator(
        partial(model.RRDBNet, out_channel=3),
        discriminator,
        sett["interpolation_parameter"],
        sett["dataset"]["hr_dimension"])
    tf.saved_model.save(interpolated_generator, kwargs["model_dir"])
def main(argv):
    del argv  # Unused.

    if FLAGS.start_profiler_server:
        # Starts profiler. It will perform profiling when receive profiling request.
        profiler.start_profiler_server(FLAGS.profiler_port_number)

    if FLAGS.use_tpu:
        if FLAGS.distribution_strategy is None:
            tpu_cluster_resolver = contrib_cluster_resolver.TPUClusterResolver(
                FLAGS.tpu, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)
            tpu_grpc_url = tpu_cluster_resolver.get_master()
            tf.Session.reset(tpu_grpc_url)
        else:
            raise RuntimeError(
                'Distribution strategy must be None when --use_tpu is True.')
    else:
        tpu_cluster_resolver = None

    if FLAGS.mode not in ['train', 'eval', 'train_and_eval']:
        raise ValueError('Unrecognize --mode: %s' % FLAGS.mode)

    # Check data path
    if FLAGS.mode in (
            'train', 'train_and_eval') and FLAGS.training_file_pattern is None:
        raise RuntimeError(
            'You must specify --training_file_pattern for training.')
    if FLAGS.mode in ('eval', 'train_and_eval'):
        if FLAGS.validation_file_pattern is None:
            raise RuntimeError('You must specify --validation_file_pattern '
                               'for evaluation.')
        if FLAGS.val_json_file is None:
            raise RuntimeError(
                'You must specify --val_json_file for evaluation.')
    if FLAGS.mode == 'train_and_eval':
        if FLAGS.distribution_strategy is not None:
            raise RuntimeError('You must use --distribution_strategy=None for '
                               'train_and_eval.')

    # Parse hparams
    hparams = retinanet_model.default_hparams()
    config_file = FLAGS.config_file
    hparams.num_epochs = FLAGS.num_epochs
    if config_file and tf.gfile.Exists(config_file):
        # load params from file.
        with tf.gfile.Open(config_file, 'r') as f:
            values_map = json.load(f)
            hparams.override_from_dict(values_map)
    hparams.parse(FLAGS.hparams)

    # The following is for spatial partitioning. `features` has one tensor while
    # `labels` had 4 + (`max_level` - `min_level` + 1) * 2 tensors. The input
    # partition is performed on `features` and all partitionable tensors of
    # `labels`, see the partition logic below.
    # In the TPUEstimator context, the meaning of `shard` and `replica` is the
    # same; follwing the API, here has mixed use of both.
    if FLAGS.use_spatial_partition:
        # Checks input_partition_dims agrees with num_cores_per_replica.
        if FLAGS.num_cores_per_replica != np.prod(FLAGS.input_partition_dims):
            raise RuntimeError(
                '--num_cores_per_replica must be a product of array'
                'elements in --input_partition_dims.')

        labels_partition_dims = {
            'mean_num_positives': None,
            'source_ids': None,
            'groundtruth_data': None,
            'image_scales': None,
        }
        # The Input Partition Logic: We partition only the partition-able tensors.
        # Spatial partition requires that the to-be-partitioned tensors must have a
        # dimension that is a multiple of `partition_dims`. Depending on the
        # `partition_dims` and the `image_size` and the `max_level` in hparams, some
        # high-level anchor labels (i.e., `cls_targets` and `box_targets`) cannot
        # be partitioned. For example, when `partition_dims` is [1, 4, 2, 1], image
        # size is 1536, `max_level` is 9, `cls_targets_8` has a shape of
        # [batch_size, 6, 6, 9], which cannot be partitioned (6 % 4 != 0). In this
        # case, the level-8 and level-9 target tensors are not partition-able, and
        # the highest partition-able level is 7.
        image_size = hparams.get('image_size')
        for level in range(hparams.get('min_level'),
                           hparams.get('max_level') + 1):

            def _can_partition(spatial_dim):
                partitionable_index = np.where(
                    spatial_dim % np.array(FLAGS.input_partition_dims) == 0)
                return len(partitionable_index[0]) == len(
                    FLAGS.input_partition_dims)

            spatial_dim = image_size // (2**level)
            if _can_partition(spatial_dim):
                labels_partition_dims['box_targets_%d' %
                                      level] = FLAGS.input_partition_dims
                labels_partition_dims['cls_targets_%d' %
                                      level] = FLAGS.input_partition_dims
            else:
                labels_partition_dims['box_targets_%d' % level] = None
                labels_partition_dims['cls_targets_%d' % level] = None

        num_cores_per_replica = FLAGS.num_cores_per_replica
        input_partition_dims = [
            FLAGS.input_partition_dims, labels_partition_dims
        ]
        num_shards = FLAGS.num_cores // num_cores_per_replica
    else:
        num_cores_per_replica = None
        input_partition_dims = None
        num_shards = FLAGS.num_cores

    config_proto = tf.ConfigProto(allow_soft_placement=True,
                                  log_device_placement=False)
    if FLAGS.use_xla and not FLAGS.use_tpu:
        config_proto.graph_options.optimizer_options.global_jit_level = (
            tf.OptimizerOptions.ON_1)
    if FLAGS.auto_mixed_precision and FLAGS.distribution_strategy:
        config_proto.graph_options.rewrite_options.auto_mixed_precision = (
            rewriter_config_pb2.RewriterConfig.ON)

    if FLAGS.distribution_strategy is None:
        # Uses TPUEstimator.
        params = dict(
            hparams.values(),
            num_shards=num_shards,
            num_examples_per_epoch=FLAGS.num_examples_per_epoch,
            use_tpu=FLAGS.use_tpu,
            resnet_checkpoint=FLAGS.resnet_checkpoint,
            val_json_file=FLAGS.val_json_file,
            mode=FLAGS.mode,
        )
        tpu_config = contrib_tpu.TPUConfig(
            FLAGS.iterations_per_loop,
            num_shards=num_shards,
            num_cores_per_replica=num_cores_per_replica,
            input_partition_dims=input_partition_dims,
            per_host_input_for_training=contrib_tpu.InputPipelineConfig.
            PER_HOST_V2)

        run_config = contrib_tpu.RunConfig(
            cluster=tpu_cluster_resolver,
            evaluation_master=FLAGS.eval_master,
            model_dir=FLAGS.model_dir,
            log_step_count_steps=FLAGS.iterations_per_loop,
            session_config=config_proto,
            tpu_config=tpu_config,
        )
    else:
        if FLAGS.num_gpus < 0:
            raise ValueError('`num_gpus` cannot be negative.')

        def _per_device_batch_size(batch_size, num_gpus):
            """Calculate per GPU batch for Estimator.

      Args:
        batch_size: Global batch size to be divided among devices.
        num_gpus: How many GPUs are used per worker.
      Returns:
        Batch size per device.
      Raises:
        ValueError: if batch_size is not divisible by number of devices
      """
            if num_gpus <= 1:
                return batch_size

            remainder = batch_size % num_gpus
            if remainder:
                raise ValueError(
                    'Batch size must be a multiple of the number GPUs per worker.'
                )
            return int(batch_size / num_gpus)

        # Uses Estimator.
        params = dict(
            hparams.values(),
            num_examples_per_epoch=FLAGS.num_examples_per_epoch,
            use_tpu=FLAGS.use_tpu,
            resnet_checkpoint=FLAGS.resnet_checkpoint,
            val_json_file=FLAGS.val_json_file,
            mode=FLAGS.mode,
            use_bfloat16=False,
            auto_mixed_precision=FLAGS.auto_mixed_precision,
            dataset_max_intra_op_parallelism=FLAGS.
            dataset_max_intra_op_parallelism,
            dataset_private_threadpool_size=FLAGS.
            dataset_private_threadpool_size,
        )

        if FLAGS.distribution_strategy == 'mirrored':
            params['batch_size'] = _per_device_batch_size(
                FLAGS.train_batch_size, FLAGS.num_gpus)

            if FLAGS.num_gpus == 0:
                devices = ['device:CPU:0']
            else:
                devices = [
                    'device:GPU:{}'.format(i) for i in range(FLAGS.num_gpus)
                ]

            if FLAGS.all_reduce_alg:
                dist_strat = tf.distribute.MirroredStrategy(
                    devices=devices,
                    cross_device_ops=contrib_distribute.
                    AllReduceCrossDeviceOps(FLAGS.all_reduce_alg, num_packs=2))
            else:
                dist_strat = tf.distribute.MirroredStrategy(devices=devices)

            run_config = tf.estimator.RunConfig(session_config=config_proto,
                                                train_distribute=dist_strat,
                                                eval_distribute=dist_strat)

        elif FLAGS.distribution_strategy == 'multi_worker_mirrored':
            local_device_protos = device_lib.list_local_devices()
            params['batch_size'] = _per_device_batch_size(
                FLAGS.train_batch_size,
                sum([1 for d in local_device_protos
                     if d.device_type == 'GPU']))

            if FLAGS.worker_hosts is None:
                tf_config_json = json.loads(os.environ.get('TF_CONFIG', '{}'))
                # Replaces master with chief.
                if tf_config_json:
                    if 'master' in tf_config_json['cluster']:
                        tf_config_json['cluster']['chief'] = tf_config_json[
                            'cluster'].pop('master')
                        if tf_config_json['task']['type'] == 'master':
                            tf_config_json['task']['type'] = 'chief'
                        os.environ['TF_CONFIG'] = json.dumps(tf_config_json)

                tf_config_json = json.loads(os.environ['TF_CONFIG'])
                worker_hosts = tf_config_json['cluster']['worker']
                worker_hosts.extend(tf_config_json['cluster'].get('chief', []))
            else:
                # Set TF_CONFIG environment variable
                worker_hosts = FLAGS.worker_hosts.split(',')
                os.environ['TF_CONFIG'] = json.dumps({
                    'cluster': {
                        'worker': worker_hosts
                    },
                    'task': {
                        'type': 'worker',
                        'index': FLAGS.task_index
                    }
                })

            dist_strat = tf.distribute.experimental.MultiWorkerMirroredStrategy(
                communication=_COLLECTIVE_COMMUNICATION_OPTIONS[
                    FLAGS.all_reduce_alg])
            run_config = tf.estimator.RunConfig(session_config=config_proto,
                                                train_distribute=dist_strat)

        else:
            raise ValueError('Unrecognized distribution strategy.')

    if FLAGS.mode == 'train':
        if FLAGS.model_dir is not None:
            if not tf.gfile.Exists(FLAGS.model_dir):
                tf.gfile.MakeDirs(FLAGS.model_dir)
            with tf.gfile.Open(os.path.join(FLAGS.model_dir, 'hparams.json'),
                               'w') as f:
                json.dump(hparams.values(), f, sort_keys=True, indent=2)
        tf.logging.info(params)
        if FLAGS.distribution_strategy is None:
            total_steps = int(
                (FLAGS.num_epochs * FLAGS.num_examples_per_epoch) /
                FLAGS.train_batch_size)
            train_estimator = contrib_tpu.TPUEstimator(
                model_fn=retinanet_model.tpu_retinanet_model_fn,
                use_tpu=FLAGS.use_tpu,
                train_batch_size=FLAGS.train_batch_size,
                config=run_config,
                params=params)
            train_estimator.train(input_fn=dataloader.InputReader(
                FLAGS.training_file_pattern, is_training=True),
                                  max_steps=total_steps)

            # Run evaluation after training finishes.
            eval_params = dict(
                params,
                input_rand_hflip=False,
                resnet_checkpoint=None,
                is_training_bn=False,
            )
            eval_estimator = contrib_tpu.TPUEstimator(
                model_fn=retinanet_model.tpu_retinanet_model_fn,
                use_tpu=FLAGS.use_tpu,
                train_batch_size=FLAGS.train_batch_size,
                eval_batch_size=FLAGS.eval_batch_size,
                predict_batch_size=FLAGS.eval_batch_size,
                config=run_config,
                params=eval_params)
            if FLAGS.eval_after_training:

                if FLAGS.val_json_file is None:
                    raise RuntimeError(
                        'You must specify --val_json_file for evaluation.')

                eval_results = evaluation.evaluate(
                    eval_estimator,
                    input_fn=dataloader.InputReader(
                        FLAGS.validation_file_pattern, is_training=False),
                    num_eval_samples=FLAGS.eval_samples,
                    eval_batch_size=FLAGS.eval_batch_size,
                    validation_json_file=FLAGS.val_json_file)
                tf.logging.info('Eval results: %s' % eval_results)
                output_dir = os.path.join(FLAGS.model_dir, 'train_eval')
                tf.gfile.MakeDirs(output_dir)
                summary_writer = tf.summary.FileWriter(output_dir)

                evaluation.write_summary(eval_results, summary_writer,
                                         total_steps)
        else:
            train_estimator = tf.estimator.Estimator(
                model_fn=retinanet_model.est_retinanet_model_fn,
                model_dir=FLAGS.model_dir,
                config=run_config,
                params=params)
            if FLAGS.distribution_strategy == 'mirrored':
                total_steps = int(
                    (FLAGS.num_epochs * FLAGS.num_examples_per_epoch) /
                    FLAGS.train_batch_size)
                tf.logging.info('Starting `MirroredStrategy` training...')
                train_estimator.train(input_fn=dataloader.InputReader(
                    FLAGS.training_file_pattern, is_training=True),
                                      max_steps=total_steps)
            elif FLAGS.distribution_strategy == 'multi_worker_mirrored':
                total_steps = int(
                    (FLAGS.num_epochs * FLAGS.num_examples_per_epoch) /
                    (len(worker_hosts) * FLAGS.train_batch_size))
                train_spec = tf.estimator.TrainSpec(
                    input_fn=dataloader.InputReader(
                        FLAGS.training_file_pattern, is_training=True),
                    max_steps=total_steps)
                eval_spec = tf.estimator.EvalSpec(input_fn=tf.data.Dataset)
                tf.logging.info(
                    'Starting `MultiWorkerMirroredStrategy` training...')
                tf.estimator.train_and_evaluate(train_estimator, train_spec,
                                                eval_spec)
            else:
                raise ValueError('Unrecognized distribution strategy.')

    elif FLAGS.mode == 'eval':
        # Eval only runs on CPU or GPU host with batch_size = 1.
        # Override the default options: disable randomization in the input pipeline
        # and don't run on the TPU.
        # Also, disable use_bfloat16 for eval on CPU/GPU.
        if FLAGS.val_json_file is None:
            raise RuntimeError(
                'You must specify --val_json_file for evaluation.')
        eval_params = dict(
            params,
            input_rand_hflip=False,
            resnet_checkpoint=None,
            is_training_bn=False,
        )
        if FLAGS.distribution_strategy is None:
            # Uses TPUEstimator.
            eval_estimator = contrib_tpu.TPUEstimator(
                model_fn=retinanet_model.tpu_retinanet_model_fn,
                use_tpu=FLAGS.use_tpu,
                train_batch_size=FLAGS.train_batch_size,
                eval_batch_size=FLAGS.eval_batch_size,
                predict_batch_size=FLAGS.eval_batch_size,
                config=run_config,
                params=eval_params)
        else:
            # Uses Estimator.
            if FLAGS.distribution_strategy == 'multi_worker_mirrored':
                raise ValueError(
                    '--distribution_strategy=multi_worker_mirrored is not supported '
                    'for eval.')
            elif FLAGS.distribution_strategy == 'mirrored':
                eval_estimator = tf.estimator.Estimator(
                    model_fn=retinanet_model.est_retinanet_model_fn,
                    model_dir=FLAGS.model_dir,
                    config=run_config,
                    params=params)
            else:
                raise ValueError('Unrecognized distribution strategy.')

        def terminate_eval():
            tf.logging.info(
                'Terminating eval after %d seconds of no checkpoints' %
                FLAGS.eval_timeout)
            return True

        output_dir = os.path.join(FLAGS.model_dir, 'eval')
        tf.gfile.MakeDirs(output_dir)
        summary_writer = tf.summary.FileWriter(output_dir)
        # Run evaluation when there's a new checkpoint
        for ckpt in contrib_training.checkpoints_iterator(
                FLAGS.model_dir,
                min_interval_secs=FLAGS.min_eval_interval,
                timeout=FLAGS.eval_timeout,
                timeout_fn=terminate_eval):

            tf.logging.info('Starting to evaluate.')
            try:
                eval_results = evaluation.evaluate(
                    eval_estimator,
                    input_fn=dataloader.InputReader(
                        FLAGS.validation_file_pattern, is_training=False),
                    num_eval_samples=FLAGS.eval_samples,
                    eval_batch_size=FLAGS.eval_batch_size,
                    validation_json_file=FLAGS.val_json_file)
                tf.logging.info('Eval results: %s' % eval_results)

                # Terminate eval job when final checkpoint is reached
                current_step = int(os.path.basename(ckpt).split('-')[1])
                total_step = int(
                    (FLAGS.num_epochs * FLAGS.num_examples_per_epoch) /
                    FLAGS.train_batch_size)
                evaluation.write_summary(eval_results, summary_writer,
                                         current_step)
                if current_step >= total_step:
                    tf.logging.info(
                        'Evaluation finished after training step %d' %
                        current_step)
                    break

            except tf.errors.NotFoundError:
                # Since the coordinator is on a different job than the TPU worker,
                # sometimes the TPU worker does not finish initializing until long after
                # the CPU job tells it to start evaluating. In this case, the checkpoint
                # file could have been deleted already.
                tf.logging.info(
                    'Checkpoint %s no longer exists, skipping checkpoint' %
                    ckpt)

    elif FLAGS.mode == 'train_and_eval':
        if FLAGS.distribution_strategy is not None:
            raise ValueError(
                'Distribution strategy is not implemented for --mode=train_and_eval.'
            )
        if FLAGS.val_json_file is None:
            raise RuntimeError(
                'You must specify --val_json_file for evaluation.')

        output_dir = os.path.join(FLAGS.model_dir, 'train_and_eval')
        tf.gfile.MakeDirs(output_dir)
        summary_writer = tf.summary.FileWriter(output_dir)
        num_cycles = int(FLAGS.num_epochs * FLAGS.num_examples_per_epoch /
                         FLAGS.num_steps_per_eval)
        for cycle in range(num_cycles):
            tf.logging.info('Starting training cycle, epoch: %d.' % cycle)
            train_estimator = contrib_tpu.TPUEstimator(
                model_fn=retinanet_model.tpu_retinanet_model_fn,
                use_tpu=FLAGS.use_tpu,
                train_batch_size=FLAGS.train_batch_size,
                config=run_config,
                params=params)
            train_estimator.train(input_fn=dataloader.InputReader(
                FLAGS.training_file_pattern, is_training=True),
                                  steps=FLAGS.num_steps_per_eval)

            tf.logging.info('Starting evaluation cycle, epoch: %d.' % cycle)
            # Run evaluation after every epoch.
            eval_params = dict(
                params,
                input_rand_hflip=False,
                resnet_checkpoint=None,
                is_training_bn=False,
            )

            eval_estimator = contrib_tpu.TPUEstimator(
                model_fn=retinanet_model.tpu_retinanet_model_fn,
                use_tpu=FLAGS.use_tpu,
                train_batch_size=FLAGS.train_batch_size,
                eval_batch_size=FLAGS.eval_batch_size,
                predict_batch_size=FLAGS.eval_batch_size,
                config=run_config,
                params=eval_params)
            eval_results = evaluation.evaluate(
                eval_estimator,
                input_fn=dataloader.InputReader(FLAGS.validation_file_pattern,
                                                is_training=False),
                num_eval_samples=FLAGS.eval_samples,
                eval_batch_size=FLAGS.eval_batch_size,
                validation_json_file=FLAGS.val_json_file)
            tf.logging.info('Evaluation results: %s' % eval_results)
            current_step = int(cycle * FLAGS.num_steps_per_eval)
            evaluation.write_summary(eval_results, summary_writer,
                                     current_step)

    else:
        tf.logging.info('Mode not found.')

    if FLAGS.model_dir:
        tf.logging.info('Exporting saved model.')
        eval_params = dict(
            params,
            use_tpu=True,
            input_rand_hflip=False,
            resnet_checkpoint=None,
            is_training_bn=False,
            use_bfloat16=False,
        )
        eval_estimator = contrib_tpu.TPUEstimator(
            model_fn=retinanet_model.tpu_retinanet_model_fn,
            use_tpu=True,
            train_batch_size=FLAGS.train_batch_size,
            predict_batch_size=FLAGS.inference_batch_size,
            config=run_config,
            params=eval_params)

        export_path = eval_estimator.export_saved_model(
            export_dir_base=FLAGS.model_dir,
            serving_input_receiver_fn=build_serving_input_fn(
                hparams.image_size, FLAGS.inference_batch_size))
        if FLAGS.add_warmup_requests:
            inference_warmup.write_warmup_requests(
                export_path,
                FLAGS.model_name,
                hparams.image_size,
                batch_sizes=[FLAGS.inference_batch_size])
Exemple #4
0
        return indices

def ProcessBatch(X, q_X, nsample):
    kdt = KDTree(X, leaf_size=30) #CoinvPoint suggests 10
    _, batch_indices = kdt.query(q_X, k = nsample)

    return batch_indices

if __name__ == "__main__":
    from tensorflow.keras.models import Model
    from tensorflow.keras.layers import Input, Conv2D
    from tensorflow.python import debug as tf_debug
    from tensorflow.python.eager import profiler as profile
    from NearestNeighbors import NearestNeighborsLayer, SampleNearestNeighborsLayer

    profile.start_profiler_server(6009)
    tf.compat.v1.keras.backend.set_session(tf_debug.TensorBoardDebugWrapperSession(tf.compat.v1.Session(), "DESKTOP-TKAPBCU:6007"))
    log_dir="logs"
    tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1, profile_batch = 3)

    batchSize = 1000
    pointCount = 5
    aCount = 2000
    radius = 1
    
    a = [[[9,9,9], [8,8,8], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], 
        [1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1],
        [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2],
        [3, 3, 3], [3, 3, 3]]]
    a = np.array(a, dtype=np.float32)