Exemple #1
0
def _Recognizer(x):
    x = Padding1(x)
    x = Conv1(x)
    x = Pooling1(x)
    x = Padding2(x)
    x = Conv2(x)
    x = Pooling2(x)
    x = Padding3(x)
    x = Conv3(x)
    x = Pooling3(x)
    x = Padding4(x)
    x = Conv4(x)
    x = Pooling4(x)
    x = Flatten(x)
    return x
def get_model(input_shape, intermediate_dim, latent_dim):
    # VAE model = encoder + decoder
    # build encoder model
    inputs = Input(shape=input_shape, name='encoder_input')
    x = Conv2D(64, (2, 2), activation=relu)(inputs)
    x = Conv2D(64, (3, 3), activation=relu)(x)
    x = Conv2D(64, (3, 3), activation=relu)(x)
    x = Flatten()(x)
    z_mean = Dense(latent_dim, name='z_mean')(x)
    z_log_var = Dense(latent_dim, name='z_log_var')(x)

    # use reparameterization trick to push the sampling out as input
    # note that "output_shape" isn't necessary with the TensorFlow backend
    z = Lambda(sampling, output_shape=(latent_dim, ),
               name='z')([z_mean, z_log_var])

    # instantiate encoder model
    encoder = Model(inputs, [z_mean, z_log_var, z], name='encoder')
    encoder.summary()
    # plot_model(encoder, to_file='vae_mlp_encoder.png', show_shapes=True)

    # build decoder model
    latent_inputs = Input(shape=(latent_dim, ), name='z_sampling')
    x = Dense(intermediate_dim, activation=relu)(latent_inputs)
    x = Dense(64 * 28 * 28, activation=relu)(x)
    x = Reshape((28, 28, 64))(x)
    x = Conv2DTranspose(64, (3, 3), activation=sigmoid, padding='same')(x)
    x = Conv2DTranspose(64, (3, 3), activation=sigmoid, padding='same')(x)
    outputs = Conv2D(image_channels, (2, 2), padding='same')(x)

    # instantiate decoder model
    decoder = Model(latent_inputs, outputs, name='decoder')
    decoder.summary()
    # plot_model(decoder, to_file='vae_mlp_decoder.png', show_shapes=True)

    # instantiate VAE model
    outputs = decoder(encoder(inputs)[2])
    vae = Model(inputs, outputs, name='vae_mlp')
    return vae, encoder, decoder, inputs, z_mean, z_log_var, latent_inputs, outputs
Exemple #3
0
def VGG19(include_top=True,
          weights='imagenet',
          input_tensor=None,
          input_shape=None,
          pooling=None,
          classes=1000):
    """Instantiates the VGG19 architecture.

  Optionally loads weights pre-trained
  on ImageNet. Note that when using TensorFlow,
  for best performance you should set
  `image_data_format='channels_last'` in your Keras config
  at ~/.keras/keras.json.

  The model and the weights are compatible with both
  TensorFlow and Theano. The data format
  convention used by the model is the one
  specified in your Keras config file.

  Arguments:
      include_top: whether to include the 3 fully-connected
          layers at the top of the network.
      weights: one of `None` (random initialization),
            'imagenet' (pre-training on ImageNet),
            or the path to the weights file to be loaded.
      input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
          to use as image input for the model.
      input_shape: optional shape tuple, only to be specified
          if `include_top` is False (otherwise the input shape
          has to be `(224, 224, 3)` (with `channels_last` data format)
          or `(3, 224, 224)` (with `channels_first` data format).
          It should have exactly 3 inputs channels,
          and width and height should be no smaller than 48.
          E.g. `(200, 200, 3)` would be one valid value.
      pooling: Optional pooling mode for feature extraction
          when `include_top` is `False`.
          - `None` means that the output of the model will be
              the 4D tensor output of the
              last convolutional layer.
          - `avg` means that global average pooling
              will be applied to the output of the
              last convolutional layer, and thus
              the output of the model will be a 2D tensor.
          - `max` means that global max pooling will
              be applied.
      classes: optional number of classes to classify images
          into, only to be specified if `include_top` is True, and
          if no `weights` argument is specified.

  Returns:
      A Keras model instance.

  Raises:
      ValueError: in case of invalid argument for `weights`,
          or invalid input shape.
  """
    if not (weights in {'imagenet', None} or os.path.exists(weights)):
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization), `imagenet` '
                         '(pre-training on ImageNet), '
                         'or the path to the weights file to be loaded.')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError('If using `weights` as imagenet with `include_top`'
                         ' as true, `classes` should be 1000')
    # Determine proper input shape
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=224,
                                      min_size=48,
                                      data_format=K.image_data_format(),
                                      require_flatten=include_top,
                                      weights=weights)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor
    # Block 1
    x = Conv2D(64, (3, 3),
               activation='relu',
               padding='same',
               name='block1_conv1')(img_input)
    x = Conv2D(64, (3, 3),
               activation='relu',
               padding='same',
               name='block1_conv2')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)

    # Block 2
    x = Conv2D(128, (3, 3),
               activation='relu',
               padding='same',
               name='block2_conv1')(x)
    x = Conv2D(128, (3, 3),
               activation='relu',
               padding='same',
               name='block2_conv2')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)

    # Block 3
    x = Conv2D(256, (3, 3),
               activation='relu',
               padding='same',
               name='block3_conv1')(x)
    x = Conv2D(256, (3, 3),
               activation='relu',
               padding='same',
               name='block3_conv2')(x)
    x = Conv2D(256, (3, 3),
               activation='relu',
               padding='same',
               name='block3_conv3')(x)
    x = Conv2D(256, (3, 3),
               activation='relu',
               padding='same',
               name='block3_conv4')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)

    # Block 4
    x = Conv2D(512, (3, 3),
               activation='relu',
               padding='same',
               name='block4_conv1')(x)
    x = Conv2D(512, (3, 3),
               activation='relu',
               padding='same',
               name='block4_conv2')(x)
    x = Conv2D(512, (3, 3),
               activation='relu',
               padding='same',
               name='block4_conv3')(x)
    x = Conv2D(512, (3, 3),
               activation='relu',
               padding='same',
               name='block4_conv4')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)

    # Block 5
    x = Conv2D(512, (3, 3),
               activation='relu',
               padding='same',
               name='block5_conv1')(x)
    x = Conv2D(512, (3, 3),
               activation='relu',
               padding='same',
               name='block5_conv2')(x)
    x = Conv2D(512, (3, 3),
               activation='relu',
               padding='same',
               name='block5_conv3')(x)
    x = Conv2D(512, (3, 3),
               activation='relu',
               padding='same',
               name='block5_conv4')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)

    if include_top:
        # Classification block
        x = Flatten(name='flatten')(x)
        x = Dense(4096, activation='relu', name='fc1')(x)
        x = Dense(4096, activation='relu', name='fc2')(x)
        x = Dense(classes, activation='softmax', name='predictions')(x)
    else:
        if pooling == 'avg':
            x = GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = Model(inputs, x, name='vgg19')

    # load weights
    if weights == 'imagenet':
        if include_top:
            weights_path = get_file(
                'vgg19_weights_tf_dim_ordering_tf_kernels.h5',
                WEIGHTS_PATH,
                cache_subdir='models',
                file_hash='cbe5617147190e668d6c5d5026f83318')
        else:
            weights_path = get_file(
                'vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5',
                WEIGHTS_PATH_NO_TOP,
                cache_subdir='models',
                file_hash='253f8cb515780f3b799900260a226db6')
        model.load_weights(weights_path)
        if K.backend() == 'theano':
            layer_utils.convert_all_kernels_in_model(model)

        if K.image_data_format() == 'channels_first':
            if include_top:
                maxpool = model.get_layer(name='block5_pool')
                shape = maxpool.output_shape[1:]
                dense = model.get_layer(name='fc1')
                layer_utils.convert_dense_weights_data_format(
                    dense, shape, 'channels_first')

    elif weights is not None:
        model.load_weights(weights)

    return model
Exemple #4
0
def ResNet50(include_top=True,
             weights='imagenet',
             input_tensor=None,
             input_shape=None,
             pooling=None,
             classes=1000):
    """Instantiates the ResNet50 architecture.

    Optionally loads weights pre-trained
    on ImageNet. Note that when using TensorFlow,
    for best performance you should set
    `image_data_format='channels_last'` in your Keras config
    at ~/.keras/keras.json.

    The model and the weights are compatible with both
    TensorFlow and Theano. The data format
    convention used by the model is the one
    specified in your Keras config file.

    # Arguments
        include_top: whether to include the fully-connected
            layer at the top of the network.
        weights: one of `None` (random initialization)
            or 'imagenet' (pre-training on ImageNet).
        input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
            to use as image input for the model.
        input_shape: optional shape tuple, only to be specified
            if `include_top` is False (otherwise the input shape
            has to be `(224, 224, 3)` (with `channels_last` data format)
            or `(3, 224, 224)` (with `channels_first` data format).
            It should have exactly 3 inputs channels,
            and width and height should be no smaller than 197.
            E.g. `(200, 200, 3)` would be one valid value.
        pooling: Optional pooling mode for feature extraction
            when `include_top` is `False`.
            - `None` means that the output of the model will be
                the 4D tensor output of the
                last convolutional layer.
            - `avg` means that global average pooling
                will be applied to the output of the
                last convolutional layer, and thus
                the output of the model will be a 2D tensor.
            - `max` means that global max pooling will
                be applied.
        classes: optional number of classes to classify images
            into, only to be specified if `include_top` is True, and
            if no `weights` argument is specified.

    # Returns
        A Keras model instance.

    # Raises
        ValueError: in case of invalid argument for `weights`,
            or invalid input shape.
    """
    if weights not in {'imagenet', None}:
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization) or `imagenet` '
                         '(pre-training on ImageNet).')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError('If using `weights` as imagenet with `include_top`'
                         ' as true, `classes` should be 1000')

    # Determine proper input shape
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=224,
                                      min_size=48,
                                      data_format=K.image_data_format(),
                                      require_flatten=include_top,
                                      weights=weights)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor
    if K.image_data_format() == 'channels_last':
        bn_axis = 3
    else:
        bn_axis = 1

    x = Conv2D(
        #64, (7, 7), strides=(2, 2), padding='same', name='conv1')(img_input)
        64,
        (7, 7),
        strides=(1, 1),
        padding='same',
        name='conv1')(img_input)
    x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
    x = Activation('relu')(x)
    x = MaxPooling2D((3, 3), strides=(2, 2))(x)

    x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')

    x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')

    x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')

    x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
    x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
    x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')

    #x = AveragePooling2D((7, 7), name='avg_pool')(x)
    #x = AveragePooling2D((2, 2), name='avg_pool')(x)
    x = AveragePooling2D((4, 4), name='avg_pool')(x)

    if include_top:
        x = Flatten()(x)
        x = Dense(classes, activation='softmax', name='fc1000')(x)
    else:
        if pooling == 'avg':
            x = GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = Model(inputs, x, name='resnet50')

    # load weights
    if weights == 'imagenet':
        if include_top:
            weights_path = get_file(
                'resnet50_weights_tf_dim_ordering_tf_kernels.h5',
                WEIGHTS_PATH,
                cache_subdir='models',
                md5_hash='a7b3fe01876f51b976af0dea6bc144eb')
        else:
            weights_path = get_file(
                'resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5',
                WEIGHTS_PATH_NO_TOP,
                cache_subdir='models',
                md5_hash='a268eb855778b3df3c7506639542a6af')
        model.load_weights(weights_path)
        if K.backend() == 'theano':
            layer_utils.convert_all_kernels_in_model(model)
            if include_top:
                maxpool = model.get_layer(name='avg_pool')
                shape = maxpool.output_shape[1:]
                dense = model.get_layer(name='fc1000')
                layer_utils.convert_dense_weights_data_format(
                    dense, shape, 'channels_first')

        if K.image_data_format() == 'channels_first' and K.backend(
        ) == 'tensorflow':
            warnings.warn('You are using the TensorFlow backend, yet you '
                          'are using the Theano '
                          'image data format convention '
                          '(`image_data_format="channels_first"`). '
                          'For best performance, set '
                          '`image_data_format="channels_last"` in '
                          'your Keras config '
                          'at ~/.keras/keras.json.')
    return model
Exemple #5
0
def get_model(nb_classes=10, add_peer=True):
    model = Sequential()

    model.add(
        Conv2D(64, (3, 3), padding='same', input_shape=(32, 32, 3),
               name='img'))
    model.add(BatchNormalization())
    model.add(Activation('relu'))

    model.add(Conv2D(64, (3, 3), padding='same', name='block1_conv2'))
    model.add(BatchNormalization())
    model.add(Activation('relu'))

    model.add(MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool'))

    model.add(Conv2D(128, (3, 3), padding='same', name='block2_conv1'))
    model.add(BatchNormalization())
    model.add(Activation('relu'))

    model.add(Conv2D(128, (3, 3), padding='same', name='block2_conv2'))
    model.add(BatchNormalization())
    model.add(Activation('relu'))
    model.add(MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool'))

    model.add(Conv2D(256, (3, 3), padding='same', name='block3_conv1'))
    model.add(BatchNormalization())
    model.add(Activation('relu'))

    model.add(Conv2D(256, (3, 3), padding='same', name='block3_conv2'))
    model.add(BatchNormalization())
    model.add(Activation('relu'))

    model.add(Conv2D(256, (3, 3), padding='same', name='block3_conv3'))
    model.add(BatchNormalization())
    model.add(Activation('relu'))

    model.add(Conv2D(256, (3, 3), padding='same', name='block3_conv4'))
    model.add(BatchNormalization())
    model.add(Activation('relu'))

    model.add(MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool'))

    model.add(Conv2D(512, (3, 3), padding='same', name='block4_conv1'))
    model.add(BatchNormalization())
    model.add(Activation('relu'))

    model.add(Conv2D(512, (3, 3), padding='same', name='block4_conv2'))
    model.add(BatchNormalization())
    model.add(Activation('relu'))

    model.add(Conv2D(512, (3, 3), padding='same', name='block4_conv3'))
    model.add(BatchNormalization())
    model.add(Activation('relu'))

    model.add(Conv2D(512, (3, 3), padding='same', name='block4_conv4'))
    model.add(BatchNormalization())
    model.add(Activation('relu'))
    model.add(MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool'))

    model.add(Conv2D(512, (3, 3), padding='same', name='block5_conv1'))
    model.add(BatchNormalization())
    model.add(Activation('relu'))

    model.add(Conv2D(512, (3, 3), padding='same', name='block5_conv2'))
    model.add(BatchNormalization())
    model.add(Activation('relu'))

    model.add(Conv2D(512, (3, 3), padding='same', name='block5_conv3'))
    model.add(BatchNormalization())
    model.add(Activation('relu'))

    model.add(Conv2D(512, (3, 3), padding='same', name='block5_conv4'))
    model.add(BatchNormalization())
    model.add(Activation('relu'))

    model.add(Flatten())

    model.add(Dense(4096))
    model.add(BatchNormalization())
    model.add(Activation('relu'))
    model.add(Dropout(0.5))

    model.add(Dense(4096, name='fc2'))
    model.add(BatchNormalization())
    model.add(Activation('relu'))
    model.add(Dropout(0.5))

    model.add(Dense(nb_classes))
    model.add(BatchNormalization())
    model.add(Activation('softmax'))

    return model
Exemple #6
0
def VGG16(include_top=True,
          weights='imagenet',
          input_tensor=None,
          input_shape=None,
          pooling=None,
          classes=1000):

    if weights not in {'imagenet', None}:
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization) or `imagenet` '
                         '(pre-training on ImageNet).')

    # Determine proper input shape
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=224,
                                      min_size=48,
                                      data_format=K.image_data_format(),
                                      require_flatten=include_top,
                                      weights=weights)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        img_input = Input(tensor=input_tensor, shape=input_shape)

    # Block 1
    x = Conv2D(64, (3, 3),
               activation='relu',
               padding='same',
               name='block1_conv1')(img_input)
    x = Conv2D(64, (3, 3),
               activation='relu',
               padding='same',
               name='block1_conv2')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)

    # Block 2
    x = Conv2D(128, (3, 3),
               activation='relu',
               padding='same',
               name='block2_conv1')(x)
    x = Conv2D(128, (3, 3),
               activation='relu',
               padding='same',
               name='block2_conv2')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)

    # Block 3
    x = Conv2D(256, (3, 3),
               activation='relu',
               padding='same',
               name='block3_conv1')(x)
    x = Conv2D(256, (3, 3),
               activation='relu',
               padding='same',
               name='block3_conv2')(x)
    x = Conv2D(256, (3, 3),
               activation='relu',
               padding='same',
               name='block3_conv3')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)

    # Block 4
    x = Conv2D(512, (3, 3),
               activation='relu',
               padding='same',
               name='block4_conv1')(x)
    x = Conv2D(512, (3, 3),
               activation='relu',
               padding='same',
               name='block4_conv2')(x)
    x = Conv2D(512, (3, 3),
               activation='relu',
               padding='same',
               name='block4_conv3')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)

    # Block 5
    x = Conv2D(512, (3, 3),
               activation='relu',
               padding='same',
               name='block5_conv1')(x)
    x = Conv2D(512, (3, 3),
               activation='relu',
               padding='same',
               name='block5_conv2')(x)
    x = Conv2D(512, (3, 3),
               activation='relu',
               padding='same',
               name='block5_conv3')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)

    if include_top:
        # Classification block
        x = Flatten(name='flatten')(x)
        x = Dense(4096, activation='relu', name='fc1')(x)
        x = Dropout(x, 0.5)
        x = Dense(4096, activation='relu', name='fc2')(x)
        x = Dropout(x, 0.5)
        x = Dense(classes, activation='softmax', name='predictions')(x)
    else:
        if pooling == 'avg':
            x = GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model.
    model = Model(inputs, x, name='vgg16')

    # load weights
    if weights == 'imagenet':
        if include_top:
            weights_path = get_file(
                'vgg16_weights_tf_dim_ordering_tf_kernels.h5',
                WEIGHTS_PATH,
                cache_subdir='models')
        else:
            weights_path = get_file(
                'vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5',
                WEIGHTS_PATH_NO_TOP,
                cache_subdir='models')

        model.load_weights(weights_path)

        # Truncate and replace softmax layer for transfer learning
        model.layers.pop()
        model.outputs = [model.layers[-1].output]
        model.layers[-1].outbound_nodes = []
        model.add(Dense(5089, activation='softmax', name='predictions'))

        # Learning rate is changed to 0.001
        sgd = SGD(lr=1e-3, decay=1e-6, momentum=0.9, nesterov=True)
        model.compile(optimizer=sgd,
                      loss='categorical_crossentropy',
                      metrics=['accuracy'])
        """
    if K.backend() == 'theano':
      layer_utils.convert_all_kernels_in_model(model)

    if K.image_data_format() == 'channels_first':
      if include_top:
        maxpool = model.get_layer(name='block5_pool')
        shape = maxpool.output_shape[1:]
        dense = model.get_layer(name='fc1')
        layer_utils.convert_dense_weights_data_format(dense, shape,
                                                      'channels_first')
    """

    return model
Exemple #7
0
Conv2 = Conv(64, (5, 5), activation='relu', kernel_initializer='glorot_normal')
Pooling2 = Pooling((3, 3))

Padding3 = Padding((1, 1))
Conv3 = Conv(128, (3, 3),
             activation='relu',
             kernel_initializer='glorot_normal')
Pooling3 = Pooling((2, 2))

Padding4 = Padding((1, 1))
Conv4 = Conv(256, (3, 3),
             activation='relu',
             kernel_initializer='glorot_normal')
Pooling4 = Pooling((2, 2))

Flatten = Flatten()

# MLP-Encoder
Hidden1 = Dense(128, activation='softplus', kernel_initializer='glorot_normal')
Hidden2 = Dense(128, activation='softplus', kernel_initializer='glorot_normal')
Latent = Dense(latent_node, name='latent', kernel_initializer='glorot_normal')

# Categorizer
Categorize = Dense(12,
                   activation='softmax',
                   kernel_initializer='glorot_normal')

# MLP-Decoder
Unhidden2 = Dense(128,
                  activation='softplus',
                  kernel_initializer='glorot_normal')
Exemple #8
0
    X = pickle.load(open("X"+str(files)+"bw.pickle", "rb"))
    y = pickle.load(open('y'+str(files)+'bw.pickle', 'rb'))

    X = X/255.0

    model = Sequential()

    #  filter = 20, kernel = 3, strides = 1, input_shape = (X.shape[1:])
    model.add(Conv2D(32, 3, strides = 2, activation = 'relu', input_shape = (20, 20, 1)))
    model.add(MaxPooling2D(pool_size=(1,1))) #  strides = x

    #  filter = 20, kernel = 3, strides = 1
    model.add(Conv2D(32, 3, strides = 2, activation = 'relu'))
    model.add(MaxPooling2D(pool_size=(1,1))) #  strides = x

    model.add(Flatten())
    model.add(Dense(2, activation = 'relu'))

    model.compile(loss='sparse_categorical_crossentropy',
                  metrics=['accuracy', 'mae', 'mse'], optimizer='sgd')

    for l_r in range (1, 4, 1):
        l_r /= 10
        
        for mom in range (1, 4, 1):
            mom /= 10
            
            optimizers.SGD(lr = l_r, momentum = mom)

            history = model.fit(X, y, batch_size=5, epochs=5, validation_split=0.1)