Exemple #1
0
def test_get_img_shape_on_2d_image():
    n = 5
    channels = 4
    dim1 = 1
    dim2 = 2

    K.set_image_data_format('channels_first')
    assert (n, channels, dim1, dim2) == utils.get_img_shape(
        K.ones(shape=(n, channels, dim1, dim2)))

    K.set_image_data_format('channels_last')
    assert (n, channels, dim1, dim2) == utils.get_img_shape(
        K.ones(shape=(n, dim1, dim2, channels)))
    def testConditionalMaskUpdate(self):
        weight = K.variable(np.linspace(1.0, 100.0, 100), name="weights")
        mask = K.ones(weight.get_shape())
        threshold = K.zeros([])

        def linear_sparsity(step):
            sparsity_val = ops.convert_to_tensor(
                [0.0, 0.1, 0.1, 0.3, 0.3, 0.5, 0.5, 0.5, 0.5, 0.5])
            return ops.convert_to_tensor(True), sparsity_val[step]

        # Set up pruning
        p = pruning_impl.Pruning(pruning_vars=[(weight, mask, threshold)],
                                 training_step_fn=self.training_step_fn,
                                 pruning_schedule=linear_sparsity,
                                 block_size=self.block_size,
                                 block_pooling_type=self.block_pooling_type)

        non_zero_count = []
        for _ in range(10):
            if context.executing_eagerly():
                p.conditional_mask_update()
                p.weight_mask_op()
                state_ops.assign_add(self.global_step, 1)
            else:
                K.get_session().run(p.conditional_mask_update())
                K.get_session().run(p.weight_mask_op())
                K.get_session().run(state_ops.assign_add(self.global_step, 1))

            non_zero_count.append(np.count_nonzero(K.get_value(weight)))

        # Weights pruned at steps 1,3,5
        expected_non_zero_count = [100, 90, 90, 70, 70, 50, 50, 50, 50, 50]
        self.assertAllEqual(expected_non_zero_count, non_zero_count)
    def call(self, inputs):
        batch_size = K.shape(inputs)[0]
        num_rows = K.int_shape(inputs)[1]
        num_cols = K.int_shape(inputs)[2]
        num_channels = K.int_shape(inputs)[3]
        n = num_rows * num_cols
        X = K.reshape(inputs, (batch_size, num_channels, n))
        factor = K.cast(1 / n, K.floatx())
        I_hat = factor * (K.eye(n) - factor * K.ones((n, n)))
        I_hat = K.tile(
            K.expand_dims(I_hat, axis=0),
            (batch_size, 1, 1))  # One identity matrix per sample in batch
        Sigma = K.batch_dot(K.batch_dot(X, I_hat),
                            K.permute_dimensions(X, (0, 2, 1)))

        # Pre-normalization
        trace = K.sum(K.sum(K.eye(num_channels) * Sigma, axis=1,
                            keepdims=True),
                      axis=2,
                      keepdims=True)
        A = Sigma / trace

        # Newton-Schulz Iteration
        Y = A
        Z = K.eye(num_channels)
        Z = K.tile(K.expand_dims(Z, axis=0), (batch_size, 1, 1))
        I3 = 3 * K.eye(num_channels)
        I3 = K.tile(K.expand_dims(I3, axis=0), (batch_size, 1, 1))
        for i in range(self.num_iter):
            Y = 0.5 * K.batch_dot(Y, I3 - K.batch_dot(Z, Y))
            Z = 0.5 * K.batch_dot(I3 - K.batch_dot(Z, Y), Z)

        # Post-compensation
        C = K.sqrt(trace) * Y

        # Extract upper triangular matrix as vector
        ones = K.ones((num_channels, num_channels))
        mask = tf.matrix_band_part(ones, 0,
                                   -1)  # Upper triangular matrix of 0s and 1s
        mask = K.cast(mask, 'bool')  # Convert integer mask to boolean mask
        triuvec = tf.boolean_mask(
            C, mask, axis=1)  # Apply mask to 2nd and 3rd dimension
        triuvec.set_shape((None, num_channels * (num_channels + 1) /
                           2))  # Set correct shape manually

        return triuvec
Exemple #4
0
    def call(self, inputs):
        _, kernel_b = xnorize(self.kernel, self.H)
        _, inputs_b = xnorize(inputs)
        outputs = K.conv2d(inputs_b,
                           kernel_b,
                           strides=self.strides,
                           padding=self.padding,
                           data_format=self.data_format,
                           dilation_rate=self.dilation_rate)

        # calculate Wa and xa

        # kernel_a
        mask = K.reshape(
            self.kernel,
            (-1,
             self.filters))  # self.nb_row * self.nb_col * channels, filters
        kernel_a = K.stop_gradient(K.mean(K.abs(mask), axis=0))  # filters

        # inputs_a
        if self.data_format == 'channels_first':
            channel_axis = 1
        else:
            channel_axis = -1
        mask = K.mean(K.abs(inputs), axis=channel_axis, keepdims=True)
        ones = K.ones(self.kernel_size + (1, 1))
        inputs_a = K.conv2d(mask,
                            ones,
                            strides=self.strides,
                            padding=self.padding,
                            data_format=self.data_format,
                            dilation_rate=self.dilation_rate
                            )  # nb_sample, 1, new_nb_row, new_nb_col
        if self.data_format == 'channels_first':
            outputs = outputs * K.stop_gradient(inputs_a) * K.expand_dims(
                K.expand_dims(K.expand_dims(kernel_a, 0), -1), -1)
        else:
            outputs = outputs * K.stop_gradient(inputs_a) * K.expand_dims(
                K.expand_dims(K.expand_dims(kernel_a, 0), 0), 0)

        if self.use_bias:
            outputs = K.bias_add(outputs,
                                 self.bias,
                                 data_format=self.data_format)

        if self.activation is not None:
            return self.activation(outputs)
        return outputs
Exemple #5
0
    def build(self, input_shape):
        input_shape = tensor_shape.TensorShape(input_shape)
        if len(input_shape) != 5:
            raise ValueError('Inputs should have rank 5, '
                             'received input shape: %s' % input_shape)
        if self.data_format == 'channels_first':
            channel_axis = 1
        else:
            channel_axis = -1
        if input_shape.dims[channel_axis].value is None:
            raise ValueError('The channel dimension of the inputs '
                             'should be defined, found None: %s' % input_shape)
        input_dim = int(input_shape[channel_axis])
        self.input_spec = InputSpec(ndim=5, axes={channel_axis: input_dim})

        if self.data_format == 'channels_first':
            depth = int(input_shape[2])
        else:
            depth = int(input_shape[1])
        kernel_shape = (depth, self.filter_size, self.filter_size, input_dim,
                        1)

        # self.kernel = self.add_weight(
        #     'kernel',
        #     shape=kernel_shape,
        #     initializer=self.kernel_initializer,
        #     regularizer=self.kernel_regularizer,
        #     constraint=self.kernel_constraint,
        #     trainable=False,
        #     dtype=self.dtype)

        W = K.ones(kernel_shape, dtype=K.floatx())
        W = W / K.cast(K.prod(K.int_shape(W)), dtype=K.floatx())
        self.kernel = W
        # self.set_weights([W])

        if self.use_bias:
            self.bias = self.add_weight('bias',
                                        shape=(depth, self.filter_size,
                                               self.filter_size),
                                        initializer=self.bias_initializer,
                                        regularizer=self.bias_regularizer,
                                        constraint=self.bias_constraint,
                                        trainable=False,
                                        dtype=self.dtype)
        else:
            self.bias = None
        self.built = True
    def _blockMasking(self, block_size, block_pooling_type, weight,
                      expected_mask):
        mask = K.ones(weight.get_shape())
        threshold = K.zeros([])

        # Set up pruning
        p = pruning_impl.Pruning(pruning_vars=[(weight, mask, threshold)],
                                 training_step_fn=self.training_step_fn,
                                 pruning_schedule=self.constant_sparsity,
                                 block_size=block_size,
                                 block_pooling_type=block_pooling_type)

        _, new_mask = p._maybe_update_block_mask(weight)
        # Check if the mask is the same size as the weights
        self.assertAllEqual(new_mask.get_shape(), weight.get_shape())
        mask_after_pruning = K.get_value(new_mask)
        self.assertAllEqual(mask_after_pruning, expected_mask)
    def testUpdateSingleMask(self):
        weight = K.variable(np.linspace(1.0, 100.0, 100), name="weights")
        mask = K.ones(weight.get_shape())
        threshold = K.zeros([])

        p = pruning_impl.Pruning(pruning_vars=[(weight, mask, threshold)],
                                 training_step_fn=self.training_step_fn,
                                 pruning_schedule=self.constant_sparsity,
                                 block_size=self.block_size,
                                 block_pooling_type=self.block_pooling_type)

        mask_before_pruning = K.get_value(mask)
        self.assertAllEqual(np.count_nonzero(mask_before_pruning), 100)

        if context.executing_eagerly():
            p.conditional_mask_update()
        else:
            K.get_session().run(p.conditional_mask_update())

        mask_after_pruning = K.get_value(mask)
        self.assertAllEqual(np.count_nonzero(mask_after_pruning), 50)
Exemple #8
0
 def __call__(self, shape, dtype=None, partition_info=None):
     # set bias to -log((1 - p)/p) for foreground
     bias = -K.log((1 - self.probability) / self.probability)
     result = K.get_value(K.ones(shape, dtype=dtype)) * bias
     return result
Exemple #9
0
 def constant(input_batch, size):
     batch_size = K.shape(input_batch)[0]
     return K.tile(K.ones((1, size)), (batch_size, 1))