class NNQ:
    def __init__(self, input_space, action_space):

        #HyperParameters
        self.GAMMA = 0.95
        self.LEARNING_RATE = 0.002
        self.MEMORY_SIZE = 1000000
        self.BATCH_SIZE = 30
        self.EXPLORATION_MAX = 1.0
        self.EXPLORATION_MIN = 0.01
        self.EXPLORATION_DECAY = 0.997
        self.exploration_rate = self.EXPLORATION_MAX
        self.reward = 0

        self.actions = action_space
        #Experience Replay
        self.memory = deque(maxlen=self.MEMORY_SIZE)

        #Create the NN model
        self.model = Sequential()
        self.model.add(
            Dense(64, input_shape=(input_space, ), activation="relu"))
        self.model.add(Dense(64, activation="relu"))
        self.model.add(Dense(self.actions, activation="softmax"))
        self.model.compile(loss="mse", optimizer=Adam(lr=self.LEARNING_RATE))

    def act(self, state):
        #Exploration vs Exploitation
        if np.random.rand() < self.exploration_rate:
            return random.randrange(self.actions)

        q_values = self.model.predict(state)

        return np.argmax(q_values[0])

    def remember(self, state, action, reward, next_state, done):
        #in every action put in the memory
        self.memory.append((state, action, reward, next_state, done))

    def experience_replay(self):
        #When the memory is filled up take a batch and train the network
        if len(self.memory) < self.MEMORY_SIZE:
            return

        batch = random.sample(self.memory, self.BATCH_SIZE)
        for state, action, reward, next_state, terminal in batch:
            q_update = reward
            if not terminal:
                q_update = (
                    reward +
                    self.GAMMA * np.amax(self.model.predict(next_state)[0]))
            q_values = self.model.predict(state)
            q_values[0][action] = q_update
            self.model.fit(state, q_values, verbose=0)

        if self.exploration_rate > self.EXPLORATION_MIN:
            self.exploration_rate *= self.EXPLORATION_DECAY
print('단어 카운트:', token.word_counts)
print('문장 카운트:', token.document_count)
print('각 단어가 몇개의 문장에 포함되어 있는가 :', token.word_docs)
print('각 단어에 매겨진 인덱스 값 :', token.word_index)

print()
# 텍스트를 읽고 긍정 , 부정 분류 예측 

docs = ['너무 재밌네요', '최고에요','참 잘만든 영화예요','추천하고 싶은 영화네요','한번 더 보고싶네요',
        '글쎄요','별로네요','생각보다 지루합니다','연기가 좋지않아요','재미없어요']

import numpy as np 
classes = np.array([1,1,1,1,1,0,0,0,0,0])

token = Tokenizer()
token.fit_on_texts(docs)
print(token.word_index)

model = Sequential()
model.add(Embedding(word_size,8,input_length=4))
#model.add(Flatten())
model.add(LSTM(32))
model.add(Dense(1,activation='sigmoid'))

print(model.summary())
model.compile(optimizer='adam',loss='binary_crossentropy')




def build_model():
    """
        Function that build the CNN + LSTM network
    """
    with tf.name_scope('CNN_LSTM'):
        model = Sequential()

        with tf.name_scope('Conv1'):
            model.add(
                TimeDistributed(Convolution2D(16, (5, 5),
                                              padding='same',
                                              strides=(2, 2)),
                                input_shape=(15, 16, 3200, 1),
                                name='Conv1'))

        model.add(BatchNormalization())
        model.add(Activation('relu'))

        with tf.name_scope('Conv2'):
            model.add(
                TimeDistributed(
                    Convolution2D(32, (5, 5),
                                  padding='same',
                                  strides=(1, 1),
                                  name='Conv2')))
            model.add(Activation('relu'))

        with tf.name_scope('Pooling'):
            model.add(TimeDistributed(MaxPooling2D(pool_size=(2, 2))))

        with tf.name_scope('Conv3'):
            model.add(
                TimeDistributed(
                    Convolution2D(32, (5, 5),
                                  padding='same',
                                  strides=(1, 1),
                                  name='Conv3')))
            model.add(Activation('relu'))

        with tf.name_scope('Conv4'):
            model.add(
                TimeDistributed(
                    Convolution2D(32, (5, 5),
                                  padding='same',
                                  strides=(1, 1),
                                  name='Conv4')))
            model.add(Activation('relu'))

        with tf.name_scope('Pooling'):
            model.add(TimeDistributed(MaxPooling2D(pool_size=(2, 2))))

        with tf.name_scope('FC1'):
            model.add(TimeDistributed(Flatten(), name='FC1'))
            model.add(Activation('relu'))

            model.add(TimeDistributed(Dropout(0.25)))

        with tf.name_scope('FC2'):
            model.add(TimeDistributed(Dense(256), name='FC2'))
            model.add(Activation('relu'))

            model.add(TimeDistributed(Dropout(0.25)))

        with tf.name_scope('LSTM'):
            model.add(tf.keras.layers.CuDNNLSTM(64, return_sequences=False))
            model.add(Dropout(0.5))

        with tf.name_scope('OutputLayer'):
            model.add(Dense(2, activation='softmax'))

    with tf.name_scope('Optimizer'):
        optimizer = optimizers.adam(lr=1e-4, decay=1e-5)

    with tf.name_scope('Loss'):
        model.compile(loss='categorical_crossentropy',
                      optimizer=optimizer,
                      metrics=['accuracy'])

    return model
Exemple #4
0
def build_model(use_gpu: bool = False,
                num_units: int = 64,
                num_layers: int = 1,
                dropout_rate: float = 0.0,
                batch_size: int = 1000,
                window_size: int = 10,
                num_params: int = 0):
    """
    Builds the RNN-Model for character prediction.

    :param window_size: Sequence size
    :param batch_size: {int} Size of batch
    :param dropout_rate: {float} Regulating Dropout rate between layers
    :param num_layers: {int} Number of layers to build
    :param num_units: {int} Number of LSTM-Units to use in network
    :param use_gpu: {bool} Uses Tensorflow GPU support if True, otherwise trains on CPU
    :param num_params: {int} Number of control parameters
    :return: Keras model
    """

    # Load max 5000 entries from the dataset to build the Tokenizer / vocabulary
    loader = Loader(min(batch_size, 5000), 0)
    tokenizer = Tokenizer(filters='', split='°', lower=False)

    for dataframe in loader:

        chars = set()

        for name in dataframe['name']:
            chars.update(set(str(name)))

        tokenizer.fit_on_texts(list(chars))

    tokenizer.fit_on_texts(['pre', '<end>', 'pad'])

    # Build Keras Model
    model = Sequential()
    for r in range(0, max(num_layers - 1, 0)):
        model.add(layer=(CuDNNLSTM if use_gpu else LSTM
                         )(num_units,
                           input_shape=(window_size,
                                        len(tokenizer.index_word) + 1 +
                                        num_params),
                           return_sequences=True))
        model.add(Dropout(dropout_rate))

    model.add(
        layer=(CuDNNLSTM if use_gpu else LSTM)(num_units,
                                               input_shape=(
                                                   window_size,
                                                   len(tokenizer.index_word) +
                                                   1 + num_params)))
    model.add(Dense(len(tokenizer.index_word) + 1, activation='softmax'))

    model.compile(optimizer='adam',
                  loss='categorical_crossentropy',
                  metrics=['accuracy'])

    # Show summary
    print(model.summary())

    return model, tokenizer
    def seq_lstm(self, y_cols_idx=[-1]):
        from tensorflow.keras import Sequential
        from tensorflow.keras.layers import Dense, LSTM, Dropout

        len_outputs = len(self.y_cols)
        len_features = len(self.x_cols)

        regressior = Sequential()

        regressior.add(
            LSTM(
                units=60,
                activation="relu",
                return_sequences=True,
                input_shape=(self.x_train.shape[1], len_features),
            )
        )
        regressior.add(Dropout(0.2))

        regressior.add(LSTM(units=120, activation="relu", return_sequences=True))
        regressior.add(Dropout(0.2))

        regressior.add(LSTM(units=240, activation="relu", return_sequences=True))
        regressior.add(Dropout(0.2))

        regressior.add(LSTM(units=240, activation="relu", return_sequences=True))
        regressior.add(Dropout(0.2))

        regressior.add(LSTM(units=120, activation="tanh"))
        regressior.add(Dropout(0.2))

        regressior.add(Dense(units=len_outputs))

        self.model = regressior
        # self.save("my_model")
        # print(self.model.summary())
        # print("model done")
        return regressior
        pass