Exemple #1
0
def _ctc_loss_v3(labels, logits, label_length, logit_length, use_gpu):
    with test_util.device(use_gpu=use_gpu):
        sparse_labels = ctc_ops.dense_labels_to_sparse(labels, label_length)
        with backprop.GradientTape() as t:
            t.watch(logits)
            ref_loss = ctc_ops.ctc_loss_v3(labels=sparse_labels,
                                           logits=logits,
                                           label_length=label_length,
                                           logit_length=logit_length,
                                           blank_index=0)
        ref_grad = t.gradient(ref_loss, [logits])
        return ref_loss, ref_grad
 def _forwardAndBackward(self, sparse_labels, logits_time_major, seed):
     np.random.seed(seed)
     params = self._genInputParams(logits_time_major=logits_time_major,
                                   sparse_labels=sparse_labels)
     labels, logits, labels_lengths, logits_lengths = params
     output_shape = (labels_lengths.shape[0], )
     upstream_gradients = self._randomFloats(output_shape)
     with backprop.GradientTape() as tape:
         tape.watch(logits)
         loss = ctc_ops.ctc_loss_v3(labels,
                                    logits,
                                    labels_lengths,
                                    logits_lengths,
                                    logits_time_major=logits_time_major,
                                    blank_index=0)
         gradient_injector_output = loss * upstream_gradients
     return loss, tape.gradient(gradient_injector_output, logits)