Exemple #1
0
def random_gamma(shape,
                 alpha,
                 beta=None,
                 dtype=dtypes.float32,
                 seed=None,
                 name=None):
  """Draws `shape` samples from each of the given Gamma distribution(s).

  `alpha` is the shape parameter describing the distribution(s), and `beta` is
  the inverse scale parameter(s).

  Example:

    samples = tf.random_gamma([10], [0.5, 1.5])
    # samples has shape [10, 2], where each slice [:, 0] and [:, 1] represents
    # the samples drawn from each distribution

    samples = tf.random_gamma([7, 5], [0.5, 1.5])
    # samples has shape [7, 5, 2], where each slice [:, :, 0] and [:, :, 1]
    # represents the 7x5 samples drawn from each of the two distributions

    samples = tf.random_gamma([30], [[1.],[3.],[5.]], beta=[[3., 4.]])
    # samples has shape [30, 3, 2], with 30 samples each of 3x2 distributions.

  Args:
    shape: A 1-D integer Tensor or Python array. The shape of the output samples
      to be drawn per alpha/beta-parameterized distribution.
    alpha: A Tensor or Python value or N-D array of type `dtype`. `alpha`
      provides the shape parameter(s) describing the gamma distribution(s) to
      sample. Must be broadcastable with `beta`.
    beta: A Tensor or Python value or N-D array of type `dtype`. Defaults to 1.
      `beta` provides the inverse scale parameter(s) of the gamma
      distribution(s) to sample. Must be broadcastable with `alpha`.
    dtype: The type of alpha, beta, and the output: `float16`, `float32`, or
      `float64`.
    seed: A Python integer. Used to create a random seed for the distributions.
      See
      [`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
      for behavior.
    name: Optional name for the operation.

  Returns:
    samples: a `Tensor` of shape `tf.concat(shape, tf.shape(alpha + beta))` with
      values of type `dtype`.
  """
  with ops.name_scope(name, "random_gamma", [shape, alpha, beta]):
    shape = ops.convert_to_tensor(shape, name="shape", dtype=dtypes.int32)
    alpha = ops.convert_to_tensor(alpha, name="alpha", dtype=dtype)
    beta = ops.convert_to_tensor(beta if beta is not None else 1,
                                 name="beta",
                                 dtype=dtype)
    alpha_broadcast = alpha + array_ops.zeros_like(beta)
    seed1, seed2 = random_seed.get_seed(seed)
    return gen_random_ops._random_gamma(shape,
                                        alpha_broadcast,
                                        seed=seed1,
                                        seed2=seed2) / beta
Exemple #2
0
def random_gamma(shape,
                 alpha,
                 beta=None,
                 dtype=dtypes.float32,
                 seed=None,
                 name=None):
    """Draws `shape` samples from each of the given Gamma distribution(s).

  `alpha` is the shape parameter describing the distribution(s), and `beta` is
  the inverse scale parameter(s).

  Example:

    samples = tf.random_gamma([10], [0.5, 1.5])
    # samples has shape [10, 2], where each slice [:, 0] and [:, 1] represents
    # the samples drawn from each distribution

    samples = tf.random_gamma([7, 5], [0.5, 1.5])
    # samples has shape [7, 5, 2], where each slice [:, :, 0] and [:, :, 1]
    # represents the 7x5 samples drawn from each of the two distributions

    samples = tf.random_gamma([30], [[1.],[3.],[5.]], beta=[[3., 4.]])
    # samples has shape [30, 3, 2], with 30 samples each of 3x2 distributions.

  Args:
    shape: A 1-D integer Tensor or Python array. The shape of the output samples
      to be drawn per alpha/beta-parameterized distribution.
    alpha: A Tensor or Python value or N-D array of type `dtype`. `alpha`
      provides the shape parameter(s) describing the gamma distribution(s) to
      sample. Must be broadcastable with `beta`.
    beta: A Tensor or Python value or N-D array of type `dtype`. Defaults to 1.
      `beta` provides the inverse scale parameter(s) of the gamma
      distribution(s) to sample. Must be broadcastable with `alpha`.
    dtype: The type of alpha, beta, and the output: `float16`, `float32`, or
      `float64`.
    seed: A Python integer. Used to create a random seed for the distributions.
      See
      [`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
      for behavior.
    name: Optional name for the operation.

  Returns:
    samples: a `Tensor` of shape `tf.concat(shape, tf.shape(alpha + beta))` with
      values of type `dtype`.
  """
    with ops.op_scope([shape, alpha, beta], name, "random_gamma"):
        shape = ops.convert_to_tensor(shape, name="shape", dtype=dtypes.int32)
        alpha = ops.convert_to_tensor(alpha, name="alpha", dtype=dtype)
        beta = ops.convert_to_tensor(beta if beta is not None else 1,
                                     name="beta",
                                     dtype=dtype)
        alpha_broadcast = alpha + array_ops.zeros_like(beta)
        seed1, seed2 = random_seed.get_seed(seed)
        return gen_random_ops._random_gamma(
            shape, alpha_broadcast, seed=seed1, seed2=seed2) / beta
Exemple #3
0
def random_gamma(shape,
                 alpha,
                 beta=None,
                 dtype=dtypes.float32,
                 seed=None,
                 name=None):
    """Draws `shape` samples from each of the given Gamma distribution(s).

  `alpha` is the shape parameter describing the distribution(s), and `beta` is
  the inverse scale parameter(s).

  Example:

    samples = tf.random_gamma([10], [0.5, 1.5])
    # samples has shape [10, 2], where each slice [:, 0] and [:, 1] represents
    # the samples drawn from each distribution

    samples = tf.random_gamma([7, 5], [0.5, 1.5])
    # samples has shape [7, 5, 2], where each slice [:, :, 0] and [:, :, 1]
    # represents the 7x5 samples drawn from each of the two distributions

    samples = tf.random_gamma([30], [[1.],[3.],[5.]], beta=[[3., 4.]])
    # samples has shape [30, 3, 2], with 30 samples each of 3x2 distributions.

    Note: Because internal calculations are done using `float64` and casting has
    `floor` semantics, we must manually map zero outcomes to the smallest
    possible positive floating-point value, i.e., `np.finfo(dtype).tiny`.  This
    means that `np.finfo(dtype).tiny` occurs more frequently than it otherwise
    should.  This bias can only happen for small values of `alpha`, i.e.,
    `alpha << 1` or large values of `beta`, i.e., `beta >> 1`.

  Args:
    shape: A 1-D integer Tensor or Python array. The shape of the output samples
      to be drawn per alpha/beta-parameterized distribution.
    alpha: A Tensor or Python value or N-D array of type `dtype`. `alpha`
      provides the shape parameter(s) describing the gamma distribution(s) to
      sample. Must be broadcastable with `beta`.
    beta: A Tensor or Python value or N-D array of type `dtype`. Defaults to 1.
      `beta` provides the inverse scale parameter(s) of the gamma
      distribution(s) to sample. Must be broadcastable with `alpha`.
    dtype: The type of alpha, beta, and the output: `float16`, `float32`, or
      `float64`.
    seed: A Python integer. Used to create a random seed for the distributions.
      See
      @{tf.set_random_seed}
      for behavior.
    name: Optional name for the operation.

  Returns:
    samples: a `Tensor` of shape `tf.concat(shape, tf.shape(alpha + beta))`
      with values of type `dtype`.
  """
    with ops.name_scope(name, "random_gamma", [shape, alpha, beta]):
        shape = ops.convert_to_tensor(shape, name="shape", dtype=dtypes.int32)
        alpha = ops.convert_to_tensor(alpha, name="alpha", dtype=dtype)
        beta = ops.convert_to_tensor(beta if beta is not None else 1,
                                     name="beta",
                                     dtype=dtype)
        alpha_broadcast = alpha + array_ops.zeros_like(beta)
        seed1, seed2 = random_seed.get_seed(seed)
        return math_ops.maximum(
            np.finfo(dtype.as_numpy_dtype).tiny,
            gen_random_ops._random_gamma(
                shape, alpha_broadcast, seed=seed1, seed2=seed2) / beta)
Exemple #4
0
def random_gamma(shape,
                 alpha,
                 beta=None,
                 dtype=dtypes.float32,
                 seed=None,
                 name=None):
  """Draws `shape` samples from each of the given Gamma distribution(s).

  `alpha` is the shape parameter describing the distribution(s), and `beta` is
  the inverse scale parameter(s).

  Example:

    samples = tf.random_gamma([10], [0.5, 1.5])
    # samples has shape [10, 2], where each slice [:, 0] and [:, 1] represents
    # the samples drawn from each distribution

    samples = tf.random_gamma([7, 5], [0.5, 1.5])
    # samples has shape [7, 5, 2], where each slice [:, :, 0] and [:, :, 1]
    # represents the 7x5 samples drawn from each of the two distributions

    samples = tf.random_gamma([30], [[1.],[3.],[5.]], beta=[[3., 4.]])
    # samples has shape [30, 3, 2], with 30 samples each of 3x2 distributions.

    Note: Because internal calculations are done using `float64` and casting has
    `floor` semantics, we must manually map zero outcomes to the smallest
    possible positive floating-point value, i.e., `np.finfo(dtype).tiny`.  This
    means that `np.finfo(dtype).tiny` occurs more frequently than it otherwise
    should.  This bias can only happen for small values of `alpha`, i.e.,
    `alpha << 1` or large values of `beta`, i.e., `beta >> 1`.

  Args:
    shape: A 1-D integer Tensor or Python array. The shape of the output samples
      to be drawn per alpha/beta-parameterized distribution.
    alpha: A Tensor or Python value or N-D array of type `dtype`. `alpha`
      provides the shape parameter(s) describing the gamma distribution(s) to
      sample. Must be broadcastable with `beta`.
    beta: A Tensor or Python value or N-D array of type `dtype`. Defaults to 1.
      `beta` provides the inverse scale parameter(s) of the gamma
      distribution(s) to sample. Must be broadcastable with `alpha`.
    dtype: The type of alpha, beta, and the output: `float16`, `float32`, or
      `float64`.
    seed: A Python integer. Used to create a random seed for the distributions.
      See
      @{tf.set_random_seed}
      for behavior.
    name: Optional name for the operation.

  Returns:
    samples: a `Tensor` of shape `tf.concat(shape, tf.shape(alpha + beta))`
      with values of type `dtype`.
  """
  with ops.name_scope(name, "random_gamma", [shape, alpha, beta]):
    shape = ops.convert_to_tensor(shape, name="shape", dtype=dtypes.int32)
    alpha = ops.convert_to_tensor(alpha, name="alpha", dtype=dtype)
    beta = ops.convert_to_tensor(
        beta if beta is not None else 1, name="beta", dtype=dtype)
    alpha_broadcast = alpha + array_ops.zeros_like(beta)
    seed1, seed2 = random_seed.get_seed(seed)
    return math_ops.maximum(
        np.finfo(dtype.as_numpy_dtype).tiny,
        gen_random_ops._random_gamma(
            shape, alpha_broadcast, seed=seed1, seed2=seed2) / beta)
Exemple #5
0
def random_gamma(shape,
                 alpha,
                 beta=None,
                 dtype=dtypes.float32,
                 seed=None,
                 name=None):
  """Draws `shape` samples from each of the given Gamma distribution(s).

  `alpha` is the shape parameter describing the distribution(s), and `beta` is
  the inverse scale parameter(s).

  Example:

    samples = tf.random_gamma([10], [0.5, 1.5])
    # samples has shape [10, 2], where each slice [:, 0] and [:, 1] represents
    # the samples drawn from each distribution

    samples = tf.random_gamma([7, 5], [0.5, 1.5])
    # samples has shape [7, 5, 2], where each slice [:, :, 0] and [:, :, 1]
    # represents the 7x5 samples drawn from each of the two distributions

    samples = tf.random_gamma([30], [[1.],[3.],[5.]], beta=[[3., 4.]])
    # samples has shape [30, 3, 2], with 30 samples each of 3x2 distributions.

    Note that for small alpha values, there is a chance you will draw a value of
    exactly 0, which gets worse for lower-precision dtypes, even though zero is
    not in the support of the gamma distribution.

    Relevant cdfs (~chance you will draw a exactly-0 value):
    ```
      stats.gamma(.01).cdf(np.finfo(np.float16).tiny)
          0.91269738769897879
      stats.gamma(.01).cdf(np.finfo(np.float32).tiny)
          0.41992668622045726
      stats.gamma(.01).cdf(np.finfo(np.float64).tiny)
          0.00084322740680686662
      stats.gamma(.35).cdf(np.finfo(np.float16).tiny)
          0.037583276135263931
      stats.gamma(.35).cdf(np.finfo(np.float32).tiny)
          5.9514895726818067e-14
      stats.gamma(.35).cdf(np.finfo(np.float64).tiny)
          2.3529843400647272e-108
    ```

  Args:
    shape: A 1-D integer Tensor or Python array. The shape of the output samples
      to be drawn per alpha/beta-parameterized distribution.
    alpha: A Tensor or Python value or N-D array of type `dtype`. `alpha`
      provides the shape parameter(s) describing the gamma distribution(s) to
      sample. Must be broadcastable with `beta`.
    beta: A Tensor or Python value or N-D array of type `dtype`. Defaults to 1.
      `beta` provides the inverse scale parameter(s) of the gamma
      distribution(s) to sample. Must be broadcastable with `alpha`.
    dtype: The type of alpha, beta, and the output: `float16`, `float32`, or
      `float64`.
    seed: A Python integer. Used to create a random seed for the distributions.
      See
      [`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
      for behavior.
    name: Optional name for the operation.

  Returns:
    samples: a `Tensor` of shape `tf.concat(shape, tf.shape(alpha + beta))` with
      values of type `dtype`.
  """
  with ops.name_scope(name, "random_gamma", [shape, alpha, beta]):
    shape = ops.convert_to_tensor(shape, name="shape", dtype=dtypes.int32)
    alpha = ops.convert_to_tensor(alpha, name="alpha", dtype=dtype)
    beta = ops.convert_to_tensor(beta if beta is not None else 1,
                                 name="beta",
                                 dtype=dtype)
    alpha_broadcast = alpha + array_ops.zeros_like(beta)
    seed1, seed2 = random_seed.get_seed(seed)
    return gen_random_ops._random_gamma(shape,
                                        alpha_broadcast,
                                        seed=seed1,
                                        seed2=seed2) / beta
Exemple #6
0
def random_gamma(shape,
                 alpha,
                 beta=None,
                 dtype=dtypes.float32,
                 seed=None,
                 name=None):
  """Draws `shape` samples from each of the given Gamma distribution(s).

  `alpha` is the shape parameter describing the distribution(s), and `beta` is
  the inverse scale parameter(s).

  Example:

    samples = tf.random_gamma([10], [0.5, 1.5])
    # samples has shape [10, 2], where each slice [:, 0] and [:, 1] represents
    # the samples drawn from each distribution

    samples = tf.random_gamma([7, 5], [0.5, 1.5])
    # samples has shape [7, 5, 2], where each slice [:, :, 0] and [:, :, 1]
    # represents the 7x5 samples drawn from each of the two distributions

    samples = tf.random_gamma([30], [[1.],[3.],[5.]], beta=[[3., 4.]])
    # samples has shape [30, 3, 2], with 30 samples each of 3x2 distributions.

    Note that for small alpha values, there is a chance you will draw a value of
    exactly 0, which gets worse for lower-precision dtypes, even though zero is
    not in the support of the gamma distribution.

    Relevant cdfs (~chance you will draw a exactly-0 value):
    ```
      stats.gamma(.01).cdf(np.finfo(np.float16).tiny)
          0.91269738769897879
      stats.gamma(.01).cdf(np.finfo(np.float32).tiny)
          0.41992668622045726
      stats.gamma(.01).cdf(np.finfo(np.float64).tiny)
          0.00084322740680686662
      stats.gamma(.35).cdf(np.finfo(np.float16).tiny)
          0.037583276135263931
      stats.gamma(.35).cdf(np.finfo(np.float32).tiny)
          5.9514895726818067e-14
      stats.gamma(.35).cdf(np.finfo(np.float64).tiny)
          2.3529843400647272e-108
    ```

  Args:
    shape: A 1-D integer Tensor or Python array. The shape of the output samples
      to be drawn per alpha/beta-parameterized distribution.
    alpha: A Tensor or Python value or N-D array of type `dtype`. `alpha`
      provides the shape parameter(s) describing the gamma distribution(s) to
      sample. Must be broadcastable with `beta`.
    beta: A Tensor or Python value or N-D array of type `dtype`. Defaults to 1.
      `beta` provides the inverse scale parameter(s) of the gamma
      distribution(s) to sample. Must be broadcastable with `alpha`.
    dtype: The type of alpha, beta, and the output: `float16`, `float32`, or
      `float64`.
    seed: A Python integer. Used to create a random seed for the distributions.
      See
      [`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
      for behavior.
    name: Optional name for the operation.

  Returns:
    samples: an `Output` of shape `tf.concat(shape, tf.shape(alpha + beta))`
      with values of type `dtype`.
  """
  with ops.name_scope(name, "random_gamma", [shape, alpha, beta]):
    shape = ops.convert_to_tensor(shape, name="shape", dtype=dtypes.int32)
    alpha = ops.convert_to_tensor(alpha, name="alpha", dtype=dtype)
    beta = ops.convert_to_tensor(beta if beta is not None else 1,
                                 name="beta",
                                 dtype=dtype)
    alpha_broadcast = alpha + array_ops.zeros_like(beta)
    seed1, seed2 = random_seed.get_seed(seed)
    return gen_random_ops._random_gamma(shape,
                                        alpha_broadcast,
                                        seed=seed1,
                                        seed2=seed2) / beta