def testTensorListContainsNonTensors(self):
        t1 = _create_tensor([1, 2], dtype=dtypes.int32)

        with self.assertRaisesRegex(
                TypeError,
                r"Expected a list of EagerTensors but element 1 has type \"str\""
        ):
            pywrap_tfe.TFE_Py_TensorShapeSlice([t1, "abc"], 0)

        with self.assertRaisesRegex(
                TypeError,
                r"Expected a list of EagerTensors but element 0 has type \"int\""
        ):
            pywrap_tfe.TFE_Py_TensorShapeSlice([2, t1], 0)
Exemple #2
0
  def testNegativeSliceDim(self):
    t1 = _create_tensor([1, 2], dtype=dtypes.int32)

    with self.assertRaisesRegexp(
        ValueError,
        r"Slice dimension must be non-negative. Got -2"):
      pywrap_tfe.TFE_Py_TensorShapeSlice([t1], -2)
Exemple #3
0
  def testTensorListNotList(self):
    t1 = _create_tensor([1, 2], dtype=dtypes.int32)

    with self.assertRaisesRegexp(
        TypeError,
        r"tensors argument must be a list or a tuple. Got.*EagerTensor"):
      pywrap_tfe.TFE_Py_TensorShapeSlice(t1, -2)
Exemple #4
0
def _ConcatGradHelper(op, grad, start_value_index, end_value_index, dim_index):
    """Gradient for concat op.

  Args:
    op: An operation.
    grad: `Tensor` or `IndexedSlices` representing the gradients with respect to
      each output of the op.
    start_value_index: An integer index of the first value in the op.inputs.
    end_value_index: An integer index of the last value in the op.inputs.
    dim_index: An integer index of concat_dim or axis parameter in op.inputs.

  Returns:
    Tensors representing the partial gradients with respect to each input
    of the op.

  Raises:
    ValueError: if concat_dim/axis is not statically known.
  """
    def _CreateDenseMaskAndBegin(sizes, concat_dim):
        """Create variables for iteratively slicing a dense gradients tensor."""
        # Since shape is 1-D, shape_of_shape = [rank-of-inputs]
        shape_of_shape = array_ops.shape(sizes[0])
        # Make a vector of length equal to the input's dimensions,
        # with 0's everywhere and 1 in the concat dim position.
        # Note: Can't use sparse_to_dense since it isn't GPU-capable (for now)
        mask = array_ops.concat([
            array_ops.fill(array_ops.expand_dims(concat_dim, 0), 0), [1],
            array_ops.fill(shape_of_shape - concat_dim - 1, 0)
        ], 0)
        begin = array_ops.fill(shape_of_shape, 0)
        return mask, begin

    def _ExtractInputShapes(inputs):
        """Extract the shapes of a set of input tensors."""
        if context.executing_eagerly():
            return array_ops.shape_n(inputs)
        sizes = []
        fully_known = True
        for x in inputs:
            input_shape = array_ops.shape(x)
            if not isinstance(input_shape,
                              ops.Tensor) or input_shape.op.type != "Const":
                fully_known = False
                break
            sizes.append(input_shape)

        if fully_known:
            return sizes
        else:
            return array_ops.shape_n(inputs)

    # Degenerate concatenation, just return grad.
    if len(op.inputs) == 2:
        return grad + [None] if end_value_index <= dim_index else [None] + grad

    concat_dim = op.inputs[dim_index]
    input_values = op.inputs[start_value_index:end_value_index]

    out_grads = []
    if isinstance(grad, ops.Tensor):
        if context.executing_eagerly() or isinstance(concat_dim,
                                                     ops.EagerTensor):
            # Using mod here for convenience since concat_dim is already verified
            # in concat implementation to be within the allowed [-rank, rank) range.
            non_neg_concat_dim = (concat_dim._numpy().item(0) %
                                  input_values[0]._rank())  # pylint: disable=protected-access
            # All inputs are guaranteed to be EagerTensors in eager mode
            sizes = pywrap_tfe.TFE_Py_TensorShapeSlice(input_values,
                                                       non_neg_concat_dim)
            out_grads = array_ops.split(grad, sizes, non_neg_concat_dim)
        else:
            if constant_op.is_constant(concat_dim):
                # If concat_dim is a constant defined in a different context,
                # then we duplicate it in the current context to avoid passing it
                # through an Enter node.
                # This is a small optimization in general, but it is required when
                # compiling with XLA, as XLA needs the concat input to be folded into a
                # constant.
                grad_context = control_flow_util.GetOutputContext(grad.op)
                dim_context = control_flow_util.GetOutputContext(concat_dim.op)
                if dim_context != grad_context:
                    value = tensor_util.constant_value(concat_dim)
                    concat_dim = constant_op.constant(value=value,
                                                      dtype=concat_dim.dtype)

            # Using mod here for convenience since concat_dim is already verified
            # in concat implementation to be within the allowed [-rank, rank) range.
            non_neg_concat_dim = concat_dim % array_ops.rank(input_values[0])

            # Get the inputs' tensor shapes
            sizes = _ExtractInputShapes(input_values)
            # The magic number of 16 was found through benchmarking a range of sizes
            # on CPUs and a Maxwell TitanX.  A speedup was seen in a large majority of
            # cases when switching implementations at N=16, but it is possible that
            # there will be a small number of performance regressions.
            if len(sizes) > 16:
                # extract the size of each input along the concat dimension
                sizes = array_ops.squeeze(
                    array_ops.slice(array_ops.stack(sizes, axis=1),
                                    [non_neg_concat_dim, 0], [1, -1]))
                out_grads = array_ops.split(grad, sizes, non_neg_concat_dim)
            else:
                offset = gen_array_ops.concat_offset(non_neg_concat_dim, sizes)
                for (begin, size) in zip(offset, sizes):
                    out_grads.append(array_ops.slice(grad, begin, size))
    elif isinstance(grad, ops.IndexedSlices):
        # Using mod here for convenience since concat_dim is already verified
        # in concat implementation to be within the allowed [-rank, rank) range.
        non_neg_concat_dim = concat_dim % array_ops.rank(input_values[0])
        concat_dim_static = tensor_util.constant_value(concat_dim)
        if concat_dim_static is None:
            raise ValueError("Can only compute IndexedSlices gradient with "
                             "statically-known concat_dim")
        if concat_dim_static < 0:
            rank = tensor_util.constant_value(array_ops.rank(input_values[0]))
            if rank is None:
                raise ValueError(
                    "Can only compute IndexedSlices gradient with "
                    "negative concat_dim when first value rank is "
                    "statically-known.")
            concat_dim_static %= rank
        # Get the inputs' tensor shapes
        sizes = [array_ops.shape(x) for x in input_values]
        if concat_dim_static > 0:
            # IndexedSlices, non_neg_concat_dim > 0. Each input gets IndexedSlices
            # gradients with all the indices, but with grad.values sliced accordingly.
            # This is like the Tensor case, except shape(grad.values)[0] is not equal
            # to shape(sizes[i])[0], since only a subset of the dim-0 values are
            # stored.
            mask, begin = _CreateDenseMaskAndBegin(sizes, non_neg_concat_dim)
            for size in sizes:
                new_values = array_ops.slice(
                    grad.values, begin,
                    array_ops.concat(
                        [[-1], array_ops.slice(size, [1], [-1])], 0))
                out_grads.append(
                    ops.IndexedSlices(new_values, grad.indices, size))
                # Lint complains begin = begin + ...
                begin = math_ops.add(begin, size * mask)
        else:
            # IndexedSlices, concat_dim == 0. Each input gets IndexedSlices gradients
            # only for the relevant indices.
            start = constant_op.constant(0, dtype=grad.indices.dtype)
            for size in sizes:
                size_concat_dim = array_ops.gather(size, non_neg_concat_dim)
                if size_concat_dim.dtype != grad.indices.dtype:
                    size_concat_dim = math_ops.cast(size_concat_dim,
                                                    dtype=grad.indices.dtype)
                end = start + size_concat_dim
                # Compute the 1-D Tensor of indices relevant for this input.
                indices_to_select = array_ops.squeeze(array_ops.where(
                    math_ops.logical_and(grad.indices >= start,
                                         grad.indices < end)),
                                                      axis=[1])
                new_indices = array_ops.gather(grad.indices,
                                               indices_to_select) - start
                new_values = array_ops.gather(grad.values, indices_to_select)
                out_grads.append(
                    ops.IndexedSlices(new_values, new_indices, size))
                start = end
    else:
        raise TypeError("Expected Tensor or IndexedSlices, got %s" %
                        type(grad))

    return (out_grads + [None] if end_value_index <= dim_index else [None] +
            out_grads)
 def testEmptyTensorList(self):
     a = pywrap_tfe.TFE_Py_TensorShapeSlice([], 0)
     self.assertTrue(isinstance(a, ops.EagerTensor))
     self.assertEqual(0, a.numpy().size)