def main(_):
    # if len(sys.argv) < 2 or sys.argv[-1].startswith('-'):
    #     print('Usage: mnist_export.py [--training_iteration=x] '
    #           '[--model_version=y] export_dir')
    #     sys.exit(-1)
    if FLAGS.training_iteration <= 0:
        print('Please specify a positive value for training iteration.')
        sys.exit(-1)
    if FLAGS.model_version <= 0:
        print('Please specify a positive value for version number.')
        sys.exit(-1)

    print('Training...')
    mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True)
    sess = tf.InteractiveSession()
    serialized_tf_example = tf.placeholder(tf.string, name='tf_example')
    feature_configs = {'x': tf.FixedLenFeature(shape=[784], dtype=tf.float32),} # 28*28 =784
    tf_example = tf.parse_example(serialized_tf_example, feature_configs)

    x = tf.identity(tf_example['x'], name='x')
    y_ = tf.placeholder('float', shape=[None, 10])

    W_conv1 = weight_variable([5, 5, 1, 32])
    b_conv1 = bias_variable([32])
    x_image = tf.reshape(x, [-1, 28, 28, 1])

    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
    h_pool1 = max_pool_2x2(h_conv1)

    W_conv2 = weight_variable([5, 5, 32, 64])
    b_conv2 = bias_variable([64])

    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
    h_pool2 = max_pool_2x2(h_conv2)

    W_fc1 = weight_variable([7 * 7 * 64, 1024])
    b_fc1 = bias_variable([1024])

    h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

    keep_prob = tf.placeholder(tf.float32)
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])

    y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2

    y = tf.nn.softmax(y_conv, name='y')
    cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

    values, indices = tf.nn.top_k(y_conv, 10) # 从小到大排名每个分数以及相应的index
    prediction_classes = tf.contrib.lookup.index_to_string(
        tf.to_int64(indices),
        mapping=tf.constant([str(i) for i in range(10)]))

    sess.run(tf.global_variables_initializer())

    for _ in range(FLAGS.training_iteration):
        batch = mnist.train.next_batch(50)
        train_step.run(feed_dict={x: batch[0],
                                  y_: batch[1], keep_prob: 0.5})
        correct_prediction = tf.equal(tf.argmax(y_conv, 1),
                                      tf.argmax(y_, 1))

        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        print('training accuracy %g' % accuracy.eval(feed_dict={
            x: mnist.test.images,
            y_: mnist.test.labels, keep_prob: 1.0}))

    print('training is finished!')

    export_path_base = FLAGS.export_path #"export_base" #sys.argv[-1]
    export_path = os.path.join(compat.as_bytes(export_path_base),compat.as_bytes(str(FLAGS.model_version)))
    print('Exporting trained model to', export_path)
    if os.path.exists(export_path_base):
        shutil.rmtree(export_path_base,ignore_errors=True)
    builder = saved_model_builder.SavedModelBuilder(export_path)


    # 分类的签名
    classification_inputs = utils.build_tensor_info(serialized_tf_example)
    classification_outputs_classes = utils.build_tensor_info(prediction_classes) # 预测的top 10的类别
    classification_outputs_scores = utils.build_tensor_info(values) # 预测的top 10的分数
    classification_signature = signature_def_utils.build_signature_def(
        inputs={signature_constants.CLASSIFY_INPUTS:classification_inputs},
        # 注意:此处的输出有两个值
        outputs={
            signature_constants.CLASSIFY_OUTPUT_CLASSES:
                classification_outputs_classes,
            signature_constants.CLASSIFY_OUTPUT_SCORES:
                classification_outputs_scores
        },
        method_name=signature_constants.CLASSIFY_METHOD_NAME
    )

    # 预测的签名
    tensor_info_x = utils.build_tensor_info(x)
    tensor_info_y = utils.build_tensor_info(y_conv) #预测时不需要再计算softmax,直接比较就行
    prediction_signature = signature_def_utils.build_signature_def(
        inputs={'images': tensor_info_x},
        outputs={'scores': tensor_info_y}, # 预测成为不同label的分数
        method_name=signature_constants.PREDICT_METHOD_NAME)

    legacy_init_op = tf.group(tf.initialize_all_tables(), name='legacy_init_op')
    builder.add_meta_graph_and_variables(
        sess, [tag_constants.SERVING],
        signature_def_map={
            'predict_images': prediction_signature,
            "class_signature": classification_signature,
            #signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: classification_signature, # serving_default
        },
        legacy_init_op=legacy_init_op)

    builder.save()
    print('new model exported!')
def parse_example_proto(example_serialized):
  """Parses an Example proto containing a training example of an image.

  The output of the build_image_data.py image preprocessing script is a dataset
  containing serialized Example protocol buffers. Each Example proto contains
  the following fields:

    image/height: 462
    image/width: 581
    image/colorspace: 'RGB'
    image/channels: 3
    image/class/label: 615
    image/class/synset: 'n03623198'
    image/class/text: 'knee pad'
    image/object/bbox/xmin: 0.1
    image/object/bbox/xmax: 0.9
    image/object/bbox/ymin: 0.2
    image/object/bbox/ymax: 0.6
    image/object/bbox/label: 615
    image/format: 'JPEG'
    image/filename: 'ILSVRC2012_val_00041207.JPEG'
    image/encoded: <JPEG encoded string>

  Args:
    example_serialized: scalar Tensor tf.string containing a serialized
      Example protocol buffer.

  Returns:
    image_buffer: Tensor tf.string containing the contents of a JPEG file.
    label: Tensor tf.int32 containing the label.
    bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords]
      where each coordinate is [0, 1) and the coordinates are arranged as
      [ymin, xmin, ymax, xmax].
    text: Tensor tf.string containing the human-readable label.
  """
  # Dense features in Example proto.
  feature_map = {
      'image/encoded': tf.FixedLenFeature([], dtype=tf.string,
                                          default_value=''),
      'image/class/label': tf.FixedLenFeature([1], dtype=tf.int64,
                                              default_value=-1),
      'image/class/text': tf.FixedLenFeature([], dtype=tf.string,
                                             default_value=''),
  }
  sparse_float32 = tf.VarLenFeature(dtype=tf.float32)
  # Sparse features in Example proto.
  feature_map.update(
      {k: sparse_float32 for k in ['image/object/bbox/xmin',
                                   'image/object/bbox/ymin',
                                   'image/object/bbox/xmax',
                                   'image/object/bbox/ymax']})

  features = tf.parse_single_example(example_serialized, feature_map)
  label = tf.cast(features['image/class/label'], dtype=tf.int32)

  xmin = tf.expand_dims(features['image/object/bbox/xmin'].values, 0)
  ymin = tf.expand_dims(features['image/object/bbox/ymin'].values, 0)
  xmax = tf.expand_dims(features['image/object/bbox/xmax'].values, 0)
  ymax = tf.expand_dims(features['image/object/bbox/ymax'].values, 0)

  # Note that we impose an ordering of (y, x) just to make life difficult.
  bbox = tf.concat(axis=0, values=[ymin, xmin, ymax, xmax])

  # Force the variable number of bounding boxes into the shape
  # [1, num_boxes, coords].
  bbox = tf.expand_dims(bbox, 0)
  bbox = tf.transpose(bbox, [0, 2, 1])

  return features['image/encoded'], label, bbox, features['image/class/text']
Exemple #3
0
# -*- coding: utf-8 -*-
# @Author  : JaeZheng
# @Time    : 2019/9/4 15:09
# @File    : FileQueue_read.py

import tensorflow as tf

# tf.train.match_filenames_once获取文件列表
files = tf.train.match_filenames_once("./data/tfrecords-*")
# tf.train.string_input_producer创建输入文件的列表,shuffle设置是否打乱
file_queue = tf.train.string_input_producer(files, shuffle=False)

reader = tf.TFRecordReader()
_, serialized_example = reader.read(file_queue)
features = tf.parse_single_example(serialized_example,
                                   features={
                                       'i': tf.FixedLenFeature([], tf.int64),
                                       'j': tf.FixedLenFeature([], tf.int64),
                                   })

with tf.Session() as sess:
    tf.local_variables_initializer().run()
    print(sess.run(files))

    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    for i in range(6):
        print(sess.run([features['i'], features['j']]))
    coord.request_stop()
    coord.join(threads)
Exemple #4
0
def get_dataset(dataset_name, split_name, dataset_dir):
    """Gets an instance of slim Dataset.

    Args:
      dataset_name: Dataset name.
      split_name: A train/val Split name.
      dataset_dir: The directory of the dataset sources.

    Returns:
      An instance of slim Dataset.

    Raises:
      ValueError: if the dataset_name or split_name is not recognized.
    """
    if dataset_name not in _DATASETS_INFORMATION:
        raise ValueError('The specified dataset is not supported yet.')

    splits_to_sizes = _DATASETS_INFORMATION[dataset_name].splits_to_sizes

    if split_name not in splits_to_sizes:
        raise ValueError('data split name %s not recognized' % split_name)

    # Prepare the variables for different datasets.
    num_classes = _DATASETS_INFORMATION[dataset_name].num_classes
    ignore_label = _DATASETS_INFORMATION[dataset_name].ignore_label

    file_pattern = _FILE_PATTERN
    file_pattern = os.path.join(dataset_dir, file_pattern % split_name)

    # Specify how the TF-Examples are decoded.
    keys_to_features = {
        'image/encoded': tf.FixedLenFeature(
            (), tf.string, default_value=''),
        'image/filename': tf.FixedLenFeature(
            (), tf.string, default_value=''),
        'image/format': tf.FixedLenFeature(
            (), tf.string, default_value='jpeg'),
        'image/height': tf.FixedLenFeature(
            (), tf.int64, default_value=0),
        'image/width': tf.FixedLenFeature(
            (), tf.int64, default_value=0),
        'image/segmentation/class/encoded': tf.FixedLenFeature(
            (), tf.string, default_value=''),
        'image/segmentation/class/format': tf.FixedLenFeature(
            (), tf.string, default_value='png'),
    }
    items_to_handlers = {
        'image': tfexample_decoder.Image(
            image_key='image/encoded',
            format_key='image/format',
            channels=3),
        'image_name': tfexample_decoder.Tensor('image/filename'),
        'height': tfexample_decoder.Tensor('image/height'),
        'width': tfexample_decoder.Tensor('image/width'),
        'labels_class': tfexample_decoder.Image(
            image_key='image/segmentation/class/encoded',
            format_key='image/segmentation/class/format',
            channels=1),
    }

    decoder = tfexample_decoder.TFExampleDecoder(
        keys_to_features, items_to_handlers)

    return dataset.Dataset(
        data_sources=file_pattern,
        reader=tf.TFRecordReader,
        decoder=decoder,
        num_samples=splits_to_sizes[split_name],
        items_to_descriptions=_ITEMS_TO_DESCRIPTIONS,
        ignore_label=ignore_label,
        num_classes=num_classes,
        name=dataset_name,
        multi_label=True)
Exemple #5
0
def arbitrary_style_image_inputs(style_dataset_file,
                                 batch_size=None,
                                 image_size=None,
                                 center_crop=True,
                                 shuffle=True,
                                 augment_style_images=False,
                                 random_style_image_size=False,
                                 min_rand_image_size=128,
                                 max_rand_image_size=300):
    """Loads a batch of random style image given the path of tfrecord dataset.

  This method does not return pre-compute Gram matrices for the images like
  style_image_inputs. But it can provide data augmentation. If
  augment_style_images is equal to True, then style images will randomly
  modified (eg. changes in brightness, hue or saturation) for data
  augmentation. If random_style_image_size is set to True then all images
  in one batch will be resized to a random size.
  Args:
    style_dataset_file: str, path to the tfrecord dataset of style files.
    batch_size: int. If provided, batches style images. Defaults to None.
    image_size: int. The images will be resized bilinearly so that the smallest
        side has size image_size. Defaults to None.
    center_crop: bool. If True, center-crops to [image_size, image_size].
        Defaults to False.
    shuffle: bool, whether to shuffle style files at random. Defaults to False.
    augment_style_images: bool. Wheather to augment style images or not.
    random_style_image_size: bool. If this value is True, then all the style
        images in one batch will be resized to a random size between
        min_rand_image_size and max_rand_image_size.
    min_rand_image_size: int. If random_style_image_size is True, this value
        specifies the minimum image size.
    max_rand_image_size: int. If random_style_image_size is True, this value
        specifies the maximum image size.

  Returns:
    4-D tensor of shape [1, ?, ?, 3] with values in [0, 1] for the style
    image (with random changes for data augmentation if
    augment_style_image_size is set to true), and 0-D tensor for the style
    label, 4-D tensor of shape [1, ?, ?, 3] with values in [0, 1] for the style
    image without random changes for data augmentation.

  Raises:
    ValueError: if center cropping is requested but no image size is provided,
        or if batch size is specified but center-cropping or
        augment-style-images is not requested,
        or if both augment-style-images and center-cropping are requested.
  """
    if center_crop and image_size is None:
        raise ValueError('center-cropping requires specifying the image size.')
    if center_crop and augment_style_images:
        raise ValueError(
            'When augment_style_images is true images will be randomly cropped.'
        )
    if batch_size is not None and not center_crop and not augment_style_images:
        raise ValueError(
            'batching requires same image sizes (Set center-cropping or '
            'augment_style_images to true)')

    with tf.name_scope('style_image_processing'):
        # Force all input processing onto CPU in order to reserve the GPU for the
        # forward inference and back-propagation.
        with tf.device('/cpu:0'):
            filename_queue = tf.train.string_input_producer(
                [style_dataset_file],
                shuffle=False,
                capacity=1,
                name='filename_queue')
            if shuffle:
                examples_queue = tf.RandomShuffleQueue(
                    capacity=64,
                    min_after_dequeue=32,
                    dtypes=[tf.string],
                    name='random_examples_queue')
            else:
                examples_queue = tf.FIFOQueue(capacity=64,
                                              dtypes=[tf.string],
                                              name='fifo_examples_queue')
            reader = tf.TFRecordReader()
            _, value = reader.read(filename_queue)
            enqueue_ops = [examples_queue.enqueue([value])]
            tf.train.queue_runner.add_queue_runner(
                tf.train.queue_runner.QueueRunner(examples_queue, enqueue_ops))
            example_serialized = examples_queue.dequeue()
            features = tf.parse_single_example(
                example_serialized,
                features={
                    'label': tf.FixedLenFeature([], tf.int64),
                    'image_raw': tf.FixedLenFeature([], tf.string)
                })
            image = tf.image.decode_jpeg(features['image_raw'])
            image.set_shape([None, None, 3])
            label = features['label']

            if image_size is not None:
                image_channels = image.shape[2].value
                if augment_style_images:
                    image_orig = image
                    image = tf.image.random_brightness(image, max_delta=0.8)
                    image = tf.image.random_saturation(image,
                                                       lower=0.5,
                                                       upper=1.5)
                    image = tf.image.random_hue(image, max_delta=0.2)
                    image = tf.image.random_flip_left_right(image)
                    image = tf.image.random_flip_up_down(image)
                    random_larger_image_size = random_ops.random_uniform(
                        [],
                        minval=image_size + 2,
                        maxval=image_size + 200,
                        dtype=dtypes.int32)
                    image = _aspect_preserving_resize(
                        image, random_larger_image_size)
                    image = tf.random_crop(
                        image, size=[image_size, image_size, image_channels])
                    image.set_shape([image_size, image_size, image_channels])

                    image_orig = _aspect_preserving_resize(
                        image_orig, image_size + 2)
                    image_orig = _central_crop([image_orig], image_size,
                                               image_size)[0]
                    image_orig.set_shape([image_size, image_size, 3])
                elif center_crop:
                    image = _aspect_preserving_resize(image, image_size + 2)
                    image = _central_crop([image], image_size, image_size)[0]
                    image.set_shape([image_size, image_size, image_channels])
                    image_orig = image
                else:
                    image = _aspect_preserving_resize(image, image_size)
                    image_orig = image

            image = tf.to_float(image) / 255.0
            image_orig = tf.to_float(image_orig) / 255.0

            if batch_size is None:
                image = tf.expand_dims(image, 0)
            else:
                [image, image_orig,
                 label] = tf.train.batch([image, image_orig, label],
                                         batch_size=batch_size)

            if random_style_image_size:
                # Selects a random size for the style images and resizes all the images
                # in the batch to that size.
                image = _aspect_preserving_resize(
                    image,
                    random_ops.random_uniform([],
                                              minval=min_rand_image_size,
                                              maxval=max_rand_image_size,
                                              dtype=dtypes.int32))

            return image, label, image_orig
print(tf.__version__)
print("Finish parameter setting")

filename = "/planes_scannet_val.tfrecords"
filename_queue = tf.train.string_input_producer(['/planes_scannet_val.tfrecords'], num_epochs=1)
reader = tf.TFRecordReader()
print(filename_queue)
_, serialized_example = reader.read(filename_queue)
print(serialized_example)
features = tf.parse_single_example(
            serialized_example,
            # Defaults are not specified since both keys are required.
            features={
                #'height': tf.FixedLenFeature([], tf.int64),
                #'width': tf.FixedLenFeature([], tf.int64),
                'image_raw': tf.FixedLenFeature([], tf.string),
                'image_path': tf.FixedLenFeature([], tf.string),
                'num_planes': tf.FixedLenFeature([], tf.int64),
                'plane': tf.FixedLenFeature([NUM_PLANES * 3], tf.float32),
                #'plane_relation': tf.FixedLenFeature([NUM_PLANES * NUM_PLANES], tf.float32),
                'segmentation_raw': tf.FixedLenFeature([], tf.string),
                'depth': tf.FixedLenFeature([HEIGHT * WIDTH], tf.float32),
                'normal': tf.FixedLenFeature([HEIGHT * WIDTH * 3], tf.float32),
                'semantics_raw': tf.FixedLenFeature([], tf.string),                
                'boundary_raw': tf.FixedLenFeature([], tf.string),
                'info': tf.FixedLenFeature([4 * 4 + 4], tf.float32),                
            })

sess=tf.Session()
print("stuck after this:1")
sess.run(tf.global_variables_initializer())
Exemple #7
0
def load_examples():
    if a.mode == 'train':
        filename_queue = tf.train.string_input_producer([a.train_tfrecord])
    elif a.mode == 'test':
        filename_queue = tf.train.string_input_producer([a.test_tfrecord])

    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)

    features = tf.parse_single_example(serialized_example,
                                       features={
                                           'im_mul_raw': tf.FixedLenFeature([], tf.string),
                                           'im_blur_raw': tf.FixedLenFeature([], tf.string),
                                           'im_lr_raw': tf.FixedLenFeature([], tf.string),
                                           'im_ndvi_raw': tf.FixedLenFeature([], tf.string),
                                           'im_ndwi_raw': tf.FixedLenFeature([], tf.string),
                                           'im_pan_raw': tf.FixedLenFeature([], tf.string),

                                       })

    im_mul_1_raw = tf.decode_raw(features['im_mul_raw'], tf.uint8)
    im_mul_1_raw = tf.reshape(im_mul_1_raw, [128, 128, 4])
    im_mul_1_raw = tf.cast(im_mul_1_raw, tf.float32)

    im_lr_1_raw = tf.decode_raw(features['im_lr_raw'], tf.uint8)
    im_lr_1_raw = tf.reshape(im_lr_1_raw, [32, 32, 4])
    im_lr_1_raw = tf.cast(im_lr_1_raw, tf.float32)

    im_ndvi_raw = tf.decode_raw(features['im_ndvi_raw'], tf.uint8)
    im_ndvi_raw = tf.reshape(im_ndvi_raw, [128, 128, 1])
    im_ndvi_raw = tf.cast(im_ndvi_raw, tf.float32)

    im_ndwi_raw = tf.decode_raw(features['im_ndwi_raw'], tf.uint8)
    im_ndwi_raw = tf.reshape(im_ndwi_raw, [128, 128, 1])
    im_ndwi_raw = tf.cast(im_ndwi_raw, tf.float32)

    im_pan_raw = tf.decode_raw(features['im_pan_raw'], tf.uint8)
    im_pan_raw = tf.reshape(im_pan_raw, [128, 128, 1])
    im_pan_raw = tf.cast(im_pan_raw, tf.float32)

    im_blur_1_raw = tf.decode_raw(features['im_blur_raw'], tf.uint8)
    im_blur_1_raw = tf.reshape(im_blur_1_raw, [128, 128, 4])
    im_blur_1_raw = tf.cast(im_blur_1_raw, tf.float32)



    if a.mode == 'train':
        inputs1_batch, inputs2_batch, inputs3_batch, inputs4_batch, targets_batch, inputs5_batch = tf.train.shuffle_batch(
            [im_blur_1_raw, im_ndvi_raw, im_ndwi_raw, im_pan_raw, im_mul_1_raw, im_lr_1_raw],
            batch_size=a.batch_size, capacity=200,
            min_after_dequeue=100)

        steps_per_epoch = int(a.train_count / a.batch_size)

    elif a.mode == 'test':
        inputs1_batch, inputs2_batch, inputs3_batch, inputs4_batch, targets_batch, inputs5_batch = tf.train.batch(
            [im_blur_1_raw, im_ndvi_raw, im_ndwi_raw, im_pan_raw, im_mul_1_raw, im_lr_1_raw],
            batch_size=a.batch_size, capacity=200)

        steps_per_epoch = int(a.test_count / a.batch_size)

    return Examples(
        inputs1=inputs1_batch,
        inputs2=inputs2_batch,
        inputs3=inputs3_batch,
        inputs4=inputs4_batch,

        inputs5=inputs5_batch,

        targets=targets_batch,
        steps_per_epoch=steps_per_epoch,
    )
Exemple #8
0
import tensorflow as tf

reader = tf.TFRecordReader()

filename_queue = tf.train.string_input_producer(["./records/output.tfrecords"])

# 从文件中读出一个样例
_, serialized_example = reader.read(filename_queue)

# 解析读入的一个样例
features = tf.parse_single_example(
    serialized_example,
    features={
        'image_raw': tf.FixedLenFeature([], tf.string),
        'pixels': tf.FixedLenFeature([], tf.int64),
        'label': tf.FixedLenFeature([], tf.int64),
    })

images = tf.decode_raw(features['image_raw'], tf.uint8)
labels = tf.cast(features['label'], tf.int32)
pixels = tf.cast(features['pixels'], tf.int32)


sess = tf.Session()

coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)

for i in range(10):
    inage, label, pixel = sess.run([images, labels, pixels])
Exemple #9
0
        def parser(record):
            # preprocess "inp_perm" and "tgt_perm"
            def _process_perm_feature(example, prefix):
                for b in range(len(bin_sizes)):
                    cnt = example.pop("{}_cnt_{}".format(prefix, b))[0]
                    tup = example.pop("{}_tup_{}".format(prefix, b))

                    tup = tf.reshape(tf.sparse_tensor_to_dense(tup),
                                     shape=[cnt, 2])

                    # tf.float32
                    perm = tf.sparse_to_dense(
                        sparse_indices=tup,
                        output_shape=[tgt_len, bin_sizes[b]],
                        sparse_values=1.0,
                        default_value=0.0)

                    example["{}_perm_{}".format(prefix, b)] = perm

            # whether allow the last batch with a potentially shorter length
            if use_tpu:
                record_spec = {
                    "inputs": tf.FixedLenFeature([tgt_len], tf.int64),
                    "labels": tf.FixedLenFeature([tgt_len], tf.int64),
                }
            else:
                record_spec = {
                    "inputs": tf.VarLenFeature(tf.int64),
                    "labels": tf.VarLenFeature(tf.int64),
                }

            # permutation related features
            if bin_sizes and use_tpu:
                # tf.float32
                record_spec["inp_mask"] = tf.FixedLenFeature([tgt_len],
                                                             tf.float32)
                record_spec["tgt_mask"] = tf.FixedLenFeature([tgt_len],
                                                             tf.float32)

                record_spec["head_labels"] = tf.FixedLenFeature([tgt_len],
                                                                tf.int64)

                for b in range(len(bin_sizes)):
                    record_spec["inp_cnt_{}".format(b)] = tf.FixedLenFeature(
                        [1], tf.int64)
                    record_spec["inp_tup_{}".format(b)] = tf.VarLenFeature(
                        tf.int64)
                    record_spec["tgt_cnt_{}".format(b)] = tf.FixedLenFeature(
                        [1], tf.int64)
                    record_spec["tgt_tup_{}".format(b)] = tf.VarLenFeature(
                        tf.int64)

            # retrieve serialized example
            example = tf.parse_single_example(serialized=record,
                                              features=record_spec)

            # transform permutation tuples to permutation matrices
            if bin_sizes and use_tpu:
                _process_perm_feature(example, "inp")
                _process_perm_feature(example, "tgt")

            # cast int64 into int32
            # cast sparse to dense
            for key in list(example.keys()):
                val = example[key]
                if tf.keras.backend.is_sparse(val):
                    val = tf.sparse.to_dense(val)
                if val.dtype == tf.int64:
                    val = tf.to_int32(val)
                example[key] = val

            if use_tpu:
                return example
            else:
                return example["inputs"], example["labels"]
Exemple #10
0
def _multi_read_and_decode(filename_queue):
    """Reads a multi record and converts it to a dictionary of tensors.

    Args:
      filename_queue: Tensor Queue, list of input files.

    Returns:
      Dictionary of tensors containing the information from a multi record.
      Image height.

    """
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(
        serialized_example,
        # Defaults are not specified since both keys are required.
        features={
            'height': tf.FixedLenFeature([], tf.int64),
            'width': tf.FixedLenFeature([], tf.int64),
            'depth': tf.FixedLenFeature([], tf.int64),
            'label_1': tf.FixedLenFeature([], tf.int64),
            'label_2': tf.FixedLenFeature([], tf.int64),
            'image_raw_1': tf.FixedLenFeature([], tf.string),
            'image_raw_2': tf.FixedLenFeature([], tf.string),
            'merged_raw': tf.FixedLenFeature([], tf.string),
        })

    # Decode 3 images
    features['image_raw_1'] = tf.decode_raw(features['image_raw_1'], tf.uint8)
    features['image_raw_2'] = tf.decode_raw(features['image_raw_2'], tf.uint8)
    features['merged_raw'] = tf.decode_raw(features['merged_raw'], tf.uint8)
    image_pixels = 36 * 36
    features['image_raw_1'].set_shape([image_pixels])
    features['image_raw_2'].set_shape([image_pixels])
    features['merged_raw'].set_shape([image_pixels])

    # Convert from [0, 255] -> [-0.5, 0.5] floats.
    features['image_raw_1'] = tf.cast(features['image_raw_1'],
                                      tf.float32) * (1. / 255)
    features['image_raw_2'] = tf.cast(features['image_raw_2'],
                                      tf.float32) * (1. / 255)
    features['merged_raw'] = tf.cast(features['merged_raw'],
                                     tf.float32) * (1. / 255)

    # Convert label from a scalar uint8 tensor to an int32 scalar.
    features['label_1'] = tf.cast(features['label_1'], tf.int32)
    features['label_2'] = tf.cast(features['label_2'], tf.int32)

    # Convert the dictionary to the format used in the code.
    res_features = {}
    res_features['height'] = features['height']
    res_features['depth'] = features['depth']
    res_features['images'] = features['merged_raw']
    res_features['labels'] = tf.one_hot(features['label_1'], 10) + tf.one_hot(
        features['label_2'], 10)
    res_features['recons_label'] = features['label_1']
    res_features['recons_image'] = features['image_raw_1']
    res_features['spare_label'] = features['label_2']
    res_features['spare_image'] = features['image_raw_2']

    return res_features, 36
Exemple #11
0
def _read_and_decode(filename_queue,
                     image_dim=28,
                     distort=False,
                     split='train',
                     evaluate=False):
    """Reads a single record and converts it to a tensor.

    Args:
      filename_queue: Tensor Queue, list of input files.
      image_dim: Scalar, the height (and width) of the image in pixels.
      distort: Boolean, whether to distort the input or not.
      split: String, the split of the data (test or train) to read from.
      evaluate: If set, avoid distorting the image.

    Returns:
      Dictionary of the (Image, label) and the image height.

    """
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(serialized_example,
                                       features={
                                           'image_raw':
                                           tf.FixedLenFeature([], tf.string),
                                           'label':
                                           tf.FixedLenFeature([], tf.int64),
                                           'height':
                                           tf.FixedLenFeature([], tf.int64),
                                           'width':
                                           tf.FixedLenFeature([], tf.int64),
                                           'depth':
                                           tf.FixedLenFeature([], tf.int64)
                                       })

    # Convert from a scalar string tensor (whose single string has
    # length image_pixel*image_pixel) to a uint8 tensor with shape
    # [image_pixel, image_pixel, 1].
    image = tf.decode_raw(features['image_raw'], tf.uint8)
    image = tf.reshape(image, [image_dim, image_dim, 1])
    image.set_shape([image_dim, image_dim, 1])

    # Convert from [0, 255] -> [-0.5, 0.5] floats.
    image = tf.cast(image, tf.float32) * (1. / 255)
    if distort:
        cropped_dim = image_dim - 4
        if not evaluate:
            image = tf.reshape(image, [image_dim, image_dim])
            image = tf.random_crop(image, [cropped_dim, cropped_dim])
            # 0.26179938779 is 15 degress in radians
            image = tf.contrib.image.rotate(
                image, random.uniform(-0.26179938779, 0.26179938779))
            image = tf.reshape(image, [cropped_dim, cropped_dim, 1])
            image.set_shape([cropped_dim, cropped_dim, 1])
        else:
            fraction = cropped_dim / image_dim
            image = tf.image.central_crop(image, central_fraction=fraction)
            image.set_shape([cropped_dim, cropped_dim, 1])
        image_dim = cropped_dim

    # Convert label from a scalar uint8 tensor to an int32 scalar.
    label = tf.cast(features['label'], tf.int32)
    features = {
        'images': image,
        'labels': tf.one_hot(label, 10),
        'recons_image': image,
        'recons_label': label,
    }
    return features, image_dim
import tensorflow as tf
import glob

data_path = '../datasets/coco/2017_training/tfrecords/'  # address to save the hdf5 file
# data_path = '/data/cvg/lukas/datasets/coco/2017_test/version/v2/final/'
data_path = '/data/cvg/lukas/datasets/coco/2017_training/version/v6/tmp/'
data_path = '/data/cvg/lukas/datasets/coco/2017_training/version/v6/final/'
data_path = '/data/cvg/lukas/datasets/coco/2017_test/version/v3/final/'
data_path = '/home/lz01a008/git/yad2k/YAD2K/voc_conversion_scripts/VOCdevkit/tfrecords/train/'
name_image_feature = 'image/encoded'
name_image_feature = 'encoded'

with tf.Session() as sess:
    feature = {name_image_feature: tf.FixedLenFeature([], tf.string)}

    all_files = glob.glob(data_path + '*')
    all_files = all_files if len(all_files) > 0 else [data_path]
    print('counting in %s files...' % (len(all_files)))
    # Create a list of filenames and pass it to a queue
    filename_queue = tf.train.string_input_producer(all_files, num_epochs=1)

    # Define a reader and read the next record
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)

    # Decode the record read by the reader
    features = tf.parse_single_example(serialized_example, features=feature)

    #image = tf.decode_raw(features['image/encoded'], tf.uint8)
    print(features)
    image = features[name_image_feature]
Exemple #13
0
def main(_):
    assert FLAGS.tfrecord, '`tfrecord` is missing.'
    filename = [FLAGS.tfrecord]
    number = number_of_jpeg(filename)
    filename_queue = tf.train.string_input_producer(filename)  #Read tfrecord
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(serialized_example,
                                       features={
                                           'image/height':
                                           tf.FixedLenFeature([], tf.int64),
                                           'image/width':
                                           tf.FixedLenFeature([], tf.int64),
                                           'image/object/bbox/xmin':
                                           tf.VarLenFeature(tf.float32),
                                           'image/object/bbox/xmax':
                                           tf.VarLenFeature(tf.float32),
                                           'image/object/bbox/ymin':
                                           tf.VarLenFeature(tf.float32),
                                           'image/object/bbox/ymax':
                                           tf.VarLenFeature(tf.float32),
                                           'image/object/class/label':
                                           tf.VarLenFeature(tf.int64),
                                           'image/encoded':
                                           tf.FixedLenFeature([], tf.string),
                                       })
    image = tf.image.decode_jpeg(features['image/encoded'])
    #label = tf.cast(features['image/object/class/label'], tf.int32)
    if not os.path.exists(FLAGS.output_filepath):
        os.makedirs(FLAGS.output_filepath)
    if FLAGS.pdf:
        pp = PdfPages(FLAGS.output_filepath + '/out.pdf')
    category_index = None
    if FLAGS.pbtxt:
        category_index = label_map_util.create_category_index_from_labelmap(
            FLAGS.pbtxt)
        print(category_index)
    with tf.Session() as sess:
        init_op = tf.initialize_all_variables()
        sess.run(init_op)
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(coord=coord)
        t_h = tf.cast(features['image/height'], tf.int32)
        t_w = tf.cast(features['image/width'], tf.int32)
        #single_shape = tf.parallel_stack([1])
        d_label = tf.sparse_tensor_to_dense(
            features['image/object/class/label'], default_value=0)
        d_xm = tf.sparse_tensor_to_dense(features['image/object/bbox/xmin'],
                                         default_value=0)
        d_xM = tf.sparse_tensor_to_dense(features['image/object/bbox/xmax'],
                                         default_value=0)
        d_ym = tf.sparse_tensor_to_dense(features['image/object/bbox/ymin'],
                                         default_value=0)
        d_yM = tf.sparse_tensor_to_dense(features['image/object/bbox/ymax'],
                                         default_value=0)
        #t_xm = tf.cast(features['image/object/bbox/xmin'], [tf.float32])
        #t_xM = tf.cast(features['image/object/bbox/xmax'], [tf.float32])
        #t_ym = tf.cast(features['image/object/bbox/ymin'], [tf.float32])
        #t_yM = tf.cast(features['image/object/bbox/ymax'], [tf.float32])
        t_l = tf.reshape(d_label, [-1])
        t_xm = tf.reshape(d_xm, [-1])
        t_xM = tf.reshape(d_xM, [-1])
        t_ym = tf.reshape(d_ym, [-1])
        t_yM = tf.reshape(d_yM, [-1])
        boxid = 0
        #axarr.autoscale(True)
        for i in range(number):
            #image = tf.reshape(image, [w, h, 3])
            example, ls, w, h, xm, xM, ym, yM = sess.run(
                [image, d_label, t_w, t_h, t_xm, t_xM, t_ym, t_yM])
            img_data_jpg = tf.image.convert_image_dtype(example,
                                                        dtype=tf.uint8)
            encode_image_jpg = tf.image.encode_jpeg(img_data_jpg)
            folder = FLAGS.output_filepath
            bx = []
            bl = []
            label = []
            for idx, l in enumerate(ls):
                #if l not in label:
                #label.append(str(l))
                bx.append([ym[idx], xm[idx], yM[idx], xM[idx]])
                #bl.append([str(l)])
                labelname = str(l)
                if category_index:
                    labeldic = category_index[int(l)]
                    labelname = labeldic['name']
                bl.append([labelname])
                if labelname not in label:
                    label.append(labelname)
                newname=folder+"/"+str(boxid)+'['+str(w)+'x'+str(h)+']'+'Label_'+labelname+'@[' \
                        +str(int(round(xm[idx]*w)))+','+str(int(round(ym[idx]*h)))+']to['  \
                        +str(int(round(xM[idx]*w)))+','+str(int(round(yM[idx]*h)))+'].jpg'
                with tf.gfile.GFile(newname, 'wb') as f:
                    f.write(encode_image_jpg.eval())
                    boxid += 1
            if FLAGS.pdf:
                num = len(label)
                with Image.open(newname) as im:
                    shape = len(np.array(im).shape)
                    #print(shape)
                    for idx, l in enumerate(bl):
                        lid = label.index(l[0])
                        if shape == 3:
                            gb = int(lid * 255.0 / num)
                            c = (255, 255 - gb, gb)
                        elif shape == 2:
                            c = int(255 - (lid * 128.0 / num))
                        #print(bx[idx])
                        #print(bl[idx])
                        #print(c)
                        vis_util.draw_bounding_boxes_on_image(
                            im,
                            np.array([bx[idx]]),
                            color=c,
                            display_str_list_list=[bl[idx]])
                    plt.imshow(im)
                    pp.savefig()
                    print(str(bl[idx]) + ":" + str(w) + "x" + str(h))
            #input('press return to continue')
        if FLAGS.pdf:
            pp.close()
        coord.request_stop()
        coord.join(threads)
Exemple #14
0
 def parse_tfrecord_tf(self, record):
     features = tf.parse_single_example(record, features={
         'shape': tf.FixedLenFeature([3], tf.int64),
         'data': tf.FixedLenFeature([], tf.string)})
     data = tf.decode_raw(features['data'], tf.as_dtype(self.dtype))
     return tf.reshape(data, features['shape'])
def main(_):
    with tf.device(
            tf.train.replica_device_setter(worker_device="/job:%s/task:%d" %
                                           (FLAGS.job_name, FLAGS.task_index),
                                           ps_device="/job:ps/cpu:0",
                                           cluster=cluster)):
        #
        # 1. read training data
        #

        # image - 784 (=28 x 28) elements of grey-scaled integer value [0, 1]
        # label - digit (0, 1, ..., 9)
        train_queue = tf.train.string_input_producer(
            [FLAGS.train_file],
            num_epochs=200)  # when all data is read, it raises OutOfRange
        train_reader = tf.TFRecordReader()
        _, train_serialized_exam = train_reader.read(train_queue)
        train_exam = tf.parse_single_example(train_serialized_exam,
                                             features={
                                                 'image_raw':
                                                 tf.FixedLenFeature([],
                                                                    tf.string),
                                                 'label':
                                                 tf.FixedLenFeature([],
                                                                    tf.int64)
                                             })
        train_image = tf.decode_raw(train_exam['image_raw'], tf.uint8)
        train_image.set_shape([784])
        train_image = tf.cast(train_image, tf.float32) * (1. / 255)
        train_label = tf.cast(train_exam['label'], tf.int32)
        train_batch_image, train_batch_label = tf.train.batch(
            [train_image, train_label], batch_size=batch_size)

        #     # for debugging... (check input)
        #     with tf.Session() as sess:
        #         sess.run(tf.global_variables_initializer())
        #         tf.train.start_queue_runners(sess=sess)
        #         for i in range(2):
        #             debug_image, debug_label = sess.run([train_batch_image, train_batch_label])
        #             tf.summary.image('images', debug_image)
        #             print(debug_label)

        #
        # 2. define graph
        #

        # define input
        plchd_image = tf.placeholder(
            dtype=tf.float32, shape=(batch_size, 784)
        )  # here we use fixed dimension with batch_size. (Please use undefined dimension with None in production.)
        plchd_label = tf.placeholder(
            dtype=tf.int32, shape=(batch_size)
        )  # here we use fixed dimension with batch_size. (Please use undefined dimension with None in production.)

        # define network and inference
        # (simple 2 fully connected hidden layer : 784->128->64->10)
        with tf.name_scope('hidden1'):
            weights = tf.Variable(tf.truncated_normal([784, 128],
                                                      stddev=1.0 /
                                                      math.sqrt(float(784))),
                                  name='weights')
            biases = tf.Variable(tf.zeros([128]), name='biases')
            hidden1 = tf.nn.relu(tf.matmul(plchd_image, weights) + biases)
        with tf.name_scope('hidden2'):
            weights = tf.Variable(tf.truncated_normal([128, 64],
                                                      stddev=1.0 /
                                                      math.sqrt(float(128))),
                                  name='weights')
            biases = tf.Variable(tf.zeros([64]), name='biases')
            hidden2 = tf.nn.relu(tf.matmul(hidden1, weights) + biases)
        with tf.name_scope('softmax_linear'):
            weights = tf.Variable(tf.truncated_normal([64, 10],
                                                      stddev=1.0 /
                                                      math.sqrt(float(64))),
                                  name='weights')
            biases = tf.Variable(tf.zeros([10]), name='biases')
            logits = tf.matmul(hidden2, weights) + biases
        global_step = tf.train.get_or_create_global_step()
        # define optimization (training)
        optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.07)
        loss = tf.losses.sparse_softmax_cross_entropy(labels=plchd_label,
                                                      logits=logits)
        train_op = optimizer.minimize(loss=loss, global_step=global_step)

        #
        # 3. run session
        #

        with tf.train.MonitoredTrainingSession(
                master=server.target,
                checkpoint_dir=FLAGS.out_dir,
                is_chief=is_chief,
        ) as sess:  # use tf.train.MonitoredTrainingSession for more advanced features ...

            # train !!!
            local_step_value = 0
            array_image, array_label = sess.run(
                [train_batch_image, train_batch_label])
            while not sess.should_stop():
                feed_dict = {
                    plchd_image: array_image,
                    plchd_label: array_label
                }
                _, global_step_value, loss_value, array_image, array_label = sess.run(
                    [
                        train_op, global_step, loss, train_batch_image,
                        train_batch_label
                    ],
                    feed_dict=feed_dict)
                local_step_value += 1
                if local_step_value % 100 == 0:
                    print(
                        "Worker: Local Step %d, Global Step %d (Loss: %.2f)" %
                        (local_step_value, global_step_value, loss_value))
    print('Training done !')
def slim_get_split(file_pattern='{}_????'):
    # Features in Pascal VOC TFRecords.
    keys_to_features = {
        'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''),
        'image/format': tf.FixedLenFeature((), tf.string,
                                           default_value='jpeg'),
        'image/image_id': tf.FixedLenFeature([1], tf.int64),
        'image/height': tf.FixedLenFeature([1], tf.int64),
        'image/width': tf.FixedLenFeature([1], tf.int64),
        'image/channels': tf.FixedLenFeature([1], tf.int64),
        'image/shape': tf.FixedLenFeature([3], tf.int64),
        'image/object/bbox/xmin': tf.VarLenFeature(dtype=tf.float32),
        'image/object/bbox/ymin': tf.VarLenFeature(dtype=tf.float32),
        'image/object/bbox/xmax': tf.VarLenFeature(dtype=tf.float32),
        'image/object/bbox/ymax': tf.VarLenFeature(dtype=tf.float32),
        'image/object/bbox/label': tf.VarLenFeature(dtype=tf.int64),
    }
    items_to_handlers = {
        'image':
        slim.tfexample_decoder.Image('image/encoded', 'image/format'),
        'image_id':
        slim.tfexample_decoder.Tensor('image/image_id'),
        'shape':
        slim.tfexample_decoder.Tensor('image/shape'),
        'object/bbox':
        slim.tfexample_decoder.BoundingBox(['ymin', 'xmin', 'ymax', 'xmax'],
                                           'image/object/bbox/'),
        'object/label':
        slim.tfexample_decoder.Tensor('image/object/bbox/label'),
    }
    decoder = slim.tfexample_decoder.TFExampleDecoder(keys_to_features,
                                                      items_to_handlers)

    dataset = slim.dataset.Dataset(data_sources=file_pattern,
                                   reader=tf.TFRecordReader,
                                   decoder=decoder,
                                   num_samples=100,
                                   items_to_descriptions=None,
                                   num_classes=81,
                                   labels_to_names=None)

    with tf.name_scope('dataset_data_provider'):
        provider = slim.dataset_data_provider.DatasetDataProvider(
            dataset,
            num_readers=2,
            common_queue_capacity=32,
            common_queue_min=8,
            shuffle=True,
            num_epochs=1)

    [org_image, image_id, shape, glabels_raw, gbboxes_raw] = provider.get(
        ['image', 'image_id', 'shape', 'object/label', 'object/bbox'])
    image, glabels, gbboxes = ssd_preprocessing.preprocess_image(
        org_image,
        glabels_raw,
        gbboxes_raw, [304, 304],
        is_training=True,
        data_format='channels_last',
        output_rgb=False)

    # image = tf.transpose(image, perm=(1, 2, 0))
    save_image_op = tf.py_func(save_image_with_bbox, [
        ssd_preprocessing.unwhiten_image(image),
        tf.clip_by_value(glabels, 0, tf.int64.max),
        tf.ones_like(glabels), gbboxes
    ],
                               tf.int64,
                               stateful=True)

    # out_shape = [304, 304]
    # image = tf.to_float(org_image)
    # image = tf.image.resize_images(image, out_shape, method=tf.image.ResizeMethod.BILINEAR, align_corners=False)
    # image.set_shape(out_shape + [3])

    # save_image_op = tf.py_func(save_image_with_bbox, [image, glabels_raw, tf.ones_like(glabels_raw), gbboxes_raw], tf.int64, stateful=True)
    """
        ============before ssd_preprocessing===============: 
        image: Tensor("dataset_data_provider/case/cond/Merge:0", shape=(?, ?, 3), dtype=uint8) 
        glabels_raw: Tensor("dataset_data_provider/SparseToDense:0", shape=(?,), dtype=int64) 
        gbboxes_raw: Tensor("dataset_data_provider/transpose:0", shape=(?, 4), dtype=float32)
        
        ============after ssd_preprocessing================: 
        image: Tensor("ssd_preprocessing_train/merge_bgr:0", shape=(304, 304, 3), dtype=float32) 
        glabels_raw: Tensor("ssd_preprocessing_train/ssd_random_sample_patch_wrapper/cond/Merge_1:0", shape=(?,), dtype=int64) 
        gbboxes_raw: Tensor("ssd_preprocessing_train/random_flip_left_right/cond_1/Merge:0", shape=(?, 4), dtype=float32)
    
    """

    return save_image_op
Exemple #17
0
    def _parse_function(self, example_proto):
        """Function to parse the example proto.

    Args:
      example_proto: Proto in the format of tf.Example.

    Returns:
      A dictionary with parsed image, label, height, width and image name.

    Raises:
      ValueError: Label is of wrong shape.
    """

        # Currently only supports jpeg and png.
        # Need to use this logic because the shape is not known for
        # tf.image.decode_image and we rely on this info to
        # extend label if necessary.
        def _decode_image(content, channels):
            return tf.cond(tf.image.is_jpeg(content),
                           lambda: tf.image.decode_jpeg(content, channels),
                           lambda: tf.image.decode_png(content, channels))

        features = {
            'image/encoded':
            tf.FixedLenFeature((), tf.string, default_value=''),
            'image/filename':
            tf.FixedLenFeature((), tf.string, default_value=''),
            'image/format':
            tf.FixedLenFeature((), tf.string, default_value='jpeg'),
            'image/height':
            tf.FixedLenFeature((), tf.int64, default_value=0),
            'image/width':
            tf.FixedLenFeature((), tf.int64, default_value=0),
            'image/segmentation/class/encoded':
            tf.FixedLenFeature((), tf.string, default_value=''),
            'image/segmentation/class/format':
            tf.FixedLenFeature((), tf.string, default_value='png'),
        }

        parsed_features = tf.parse_single_example(example_proto, features)

        image = _decode_image(parsed_features['image/encoded'], channels=3)

        label = None
        if self.split_name != common.TEST_SET:
            label = _decode_image(
                parsed_features['image/segmentation/class/encoded'],
                channels=1)

        image_name = parsed_features['image/filename']
        if image_name is None:
            image_name = tf.constant('')

        sample = {
            common.IMAGE: image,
            common.IMAGE_NAME: image_name,
            common.HEIGHT: parsed_features['image/height'],
            common.WIDTH: parsed_features['image/width'],
        }

        if label is not None:
            if label.get_shape().ndims == 2:
                label = tf.expand_dims(label, 2)
            elif label.get_shape().ndims == 3 and label.shape.dims[2] == 1:
                pass
            else:
                raise ValueError(
                    'Input label shape must be [height, width], or '
                    '[height, width, 1].')

            label.set_shape([None, None, 1])

            sample[common.LABELS_CLASS] = label

        return sample
Exemple #18
0
def file_based_input_fn_builder(input_file, seq_length, is_training,
                                drop_remainder):

    name_to_features = {
        "input_ids": tf.FixedLenFeature([sea_length], tf.int64),
        "input_mask": tf.FixedLenFeature([seq_length], tf.int64),
        "aux_data": tf.FixedLenFeature([30], tf.int64),
        "segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
        "label_ids": tf.FixedLenFeature([], tf.int64),
        "is_real_example": tf.FixedLenFeature([], tf.int64),
    }

    #again using 30 directly in above, although would be better to input in flags

    def _decode_record(record, name_to_features):
        example = tf.parse_single_example(record, name_to_features)

        # tf.Example only supports tf.int64, but the TPU only supports tf.int32.
        # So cast all int64 to int32.
        for name in list(example.keys()):
            t = example[name]
            if t.dtype == tf.int64:
                t = tf.to_int32(t)
            example[name] = t

        return example

    def input_fn(params):
        batch_size = params["batch_size"]

        # For training, we want a lot of parallel reading and shuffling.
        # For eval, we want no shuffling and parallel reading doesn't matter.
        d = None
        if is_training:
            gap_file = os.path.join(input_file, "*.tsv.tf_record")
            gap = tf.data.Dataset.list_files(gap_file)\
              .flat_map(tf.data.TFRecordDataset)\
              .take(64)
            if len(tf.gfile.ListDirectory(input_file)) > 3:
                pseudo_file = os.path.join(input_file, "*-tsv.tf_record")
                pseudo = tf.data.Dataset.list_files(pseudo_file)\
                  .flat_map(tf.data.TFRecordDataset)\
                  .shuffle(buffer_size=1000)\
                  .take(128)
                d = gap.concatenate(pseudo).shuffle(buffer_size=128)
            else:
                d = tf.data.Dataset.list_files(gap_file)\
                  .flat_map(tf.data.TFRecordDataset)
            d = d.repeat()
        else:
            d = tf.data.TFRecordDataset(input_file)

        d = d.apply(
            tf.contrib.data.map_and_batch(
                lambda record: _decode_record(record, name_to_features),
                batch_size=batch_size,
                drop_remainder=drop_remainder))

        return d

    return input_fn
Exemple #19
0
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np

path = "/media/hlee/Work/set/output.tfrecords"
files = tf.train.match_filenames_once(path)  #获取所有符合正则表达式的文件,返回文件列表
filename_queue = tf.train.string_input_producer(
    [path], shuffle=False)  # create a queue

reader = tf.TFRecordReader()
_, serialized_example = reader.read(
    filename_queue)  # return file_name and file

features = tf.parse_single_example(serialized_example,
                                   features={
                                       'label': tf.FixedLenFeature([],
                                                                   tf.int64),
                                       'img': tf.FixedLenFeature([],
                                                                 tf.string),
                                       'width': tf.FixedLenFeature([],
                                                                   tf.int64),
                                       'height': tf.FixedLenFeature([],
                                                                    tf.int64),
                                       'channels': tf.FixedLenFeature([],
                                                                      tf.int64)
                                   })  # return image and label

# img = test_tf.image.convert_image_dtype(img, dtype=test_tf.float32)
# img = test_tf.reshape(img, [512, 80, 3])  # reshape image to 512*80*3
# img = test_tf.cast(img, test_tf.float32) * (1. / 255) - 0.5  # throw img tensor

label = tf.cast(features['label'], tf.int32)  # throw label tensor
Exemple #20
0
    def getSplit(self, split_name):

        ###############################################################
        #
        # Obtains the training/validation split
        #
        ###############################################################

        #Check whether the split_name is train or validation
        if split_name not in ['train', 'validation']:
            raise ValueError(
                'The split_name %s is not recognized. Please input either train or validation as the split_name'
                % (split_name))

        #Create the full path for a general FilePattern to locate the tfrecord_files
        FilePattern_path = os.path.join(
            self.confs["Classifier"]["DatasetDir"],
            self.confs["Classifier"]["FilePattern"] % (split_name))

        #Count the total number of examples in all of these shard
        num_samples = 0
        FilePattern_for_counting = '200label_' + split_name
        tfrecords_to_count = [
            os.path.join(self.confs["Classifier"]["DatasetDir"], file)
            for file in os.listdir(self.confs["Classifier"]["DatasetDir"])
            if file.startswith(FilePattern_for_counting)
        ]

        #print(tfrecords_to_count)
        for tfrecord_file in tfrecords_to_count:
            for record in tf.python_io.tf_record_iterator(tfrecord_file):
                num_samples += 1

        #Create a reader, which must be a TFRecord reader in this case
        reader = tf.TFRecordReader

        #Create the keys_to_features dictionary for the decoder
        keys_to_features = {
            'image/encoded':
            tf.FixedLenFeature((), tf.string, default_value=''),
            'image/format':
            tf.FixedLenFeature((), tf.string, default_value='jpg'),
            'image/class/label':
            tf.FixedLenFeature([],
                               tf.int64,
                               default_value=tf.zeros([], dtype=tf.int64)),
        }

        #Create the items_to_handlers dictionary for the decoder.
        items_to_handlers = {
            'image': slim.tfexample_decoder.Image(),
            'label': slim.tfexample_decoder.Tensor('image/class/label'),
        }

        #Start to create the decoder
        decoder = slim.tfexample_decoder.TFExampleDecoder(
            keys_to_features, items_to_handlers)

        #Create the labels_to_name file
        labels_to_name_dict = self.labelsToName

        #Actually create the dataset
        dataset = slim.dataset.Dataset(
            data_sources=FilePattern_path,
            decoder=decoder,
            reader=reader,
            num_readers=4,
            num_samples=num_samples,
            num_classes=self.confs["Classifier"]["NumClasses"],
            labels_to_name=labels_to_name_dict,
            items_to_descriptions=self.items_to_descriptions)

        return dataset
Exemple #21
0
def file_based_input_fn_builder(input_file, seq_length, is_training,
                                drop_remainder):
    """Creates an `input_fn` closure to be passed to TPUEstimator."""

    name_to_features = {
        "input_ids": tf.FixedLenFeature([seq_length], tf.int64),
        "input_mask": tf.FixedLenFeature([seq_length], tf.float32),
        "segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
        "label_ids": tf.FixedLenFeature([], tf.int64),
        "is_real_example": tf.FixedLenFeature([], tf.int64),
    }
    if FLAGS.is_regression:
        name_to_features["label_ids"] = tf.FixedLenFeature([], tf.float32)

    tf.logging.info("Input tfrecord file {}".format(input_file))

    def _decode_record(record, name_to_features):
        """Decodes a record to a TensorFlow example."""
        example = tf.parse_single_example(record, name_to_features)

        # tf.Example only supports tf.int64, but the TPU only supports tf.int32.
        # So cast all int64 to int32.
        for name in list(example.keys()):
            t = example[name]
            if t.dtype == tf.int64:
                t = tf.cast(t, tf.int32)
            example[name] = t

        return example

    def input_fn(params, input_context=None):
        """The actual input function."""
        if FLAGS.use_tpu:
            batch_size = params["batch_size"]
        elif is_training:
            batch_size = FLAGS.train_batch_size
        elif FLAGS.do_eval:
            batch_size = FLAGS.eval_batch_size
        else:
            batch_size = FLAGS.predict_batch_size

        d = tf.data.TFRecordDataset(input_file)
        # Shard the dataset to difference devices
        if input_context is not None:
            tf.logging.info("Input pipeline id %d out of %d",
                            input_context.input_pipeline_id,
                            input_context.num_replicas_in_sync)
            d = d.shard(input_context.num_input_pipelines,
                        input_context.input_pipeline_id)

        # For training, we want a lot of parallel reading and shuffling.
        # For eval, we want no shuffling and parallel reading doesn't matter.
        if is_training:
            d = d.shuffle(buffer_size=FLAGS.shuffle_buffer)
            d = d.repeat()

        d = d.apply(
            tf.contrib.data.map_and_batch(
                lambda record: _decode_record(record, name_to_features),
                batch_size=batch_size,
                drop_remainder=drop_remainder))

        return d

    return input_fn
Exemple #22
0
def get_split(split_name, dataset_dir, file_pattern, reader, split_to_sizes,
              items_to_descriptions, num_classes):
    """Gets a dataset tuple with instructions for reading Pascal VOC dataset.

    Args:
      split_name: A train/test split name.
      dataset_dir: The base directory of the dataset sources.
      file_pattern: The file pattern to use when matching the dataset sources.
        It is assumed that the pattern contains a '%s' string so that the split
        name can be inserted.
      reader: The TensorFlow reader type.

    Returns:
      A `Dataset` namedtuple.

    Raises:
        ValueError: if `split_name` is not a valid train/test split.
    """
    if split_name not in split_to_sizes:
        raise ValueError('split name %s was not recognized.' % split_name)
    file_pattern = os.path.join(dataset_dir, file_pattern % split_name)

    # Allowing None in the signature so that dataset_factory can use the default.
    if reader is None:
        reader = tf.TFRecordReader
    # Features in Pascal VOC TFRecords.
    keys_to_features = {
        'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''),
        'image/format': tf.FixedLenFeature((), tf.string,
                                           default_value='jpeg'),
        'image/height': tf.FixedLenFeature([1], tf.int64),
        'image/width': tf.FixedLenFeature([1], tf.int64),
        'image/channels': tf.FixedLenFeature([1], tf.int64),
        'image/shape': tf.FixedLenFeature([3], tf.int64),
        'image/object/bbox/xmin': tf.VarLenFeature(dtype=tf.float32),
        'image/object/bbox/ymin': tf.VarLenFeature(dtype=tf.float32),
        'image/object/bbox/xmax': tf.VarLenFeature(dtype=tf.float32),
        'image/object/bbox/ymax': tf.VarLenFeature(dtype=tf.float32),
        'image/object/bbox/label': tf.VarLenFeature(dtype=tf.int64),
        'image/object/bbox/difficult': tf.VarLenFeature(dtype=tf.int64),
        'image/object/bbox/truncated': tf.VarLenFeature(dtype=tf.int64),
    }

    items_to_handlers = {
        'image':
        slim.tfexample_decoder.Image('image/encoded', 'image/format'),
        'shape':
        slim.tfexample_decoder.Tensor('image/shape'),
        'object/bbox':
        slim.tfexample_decoder.BoundingBox(['ymin', 'xmin', 'ymax', 'xmax'],
                                           'image/object/bbox/'),
        'object/label':
        slim.tfexample_decoder.Tensor('image/object/bbox/label'),
        'object/difficult':
        slim.tfexample_decoder.Tensor('image/object/bbox/difficult'),
        'object/truncated':
        slim.tfexample_decoder.Tensor('image/object/bbox/truncated'),
    }

    decoder = slim.tfexample_decoder.TFExampleDecoder(keys_to_features,
                                                      items_to_handlers)

    labels_to_names = None
    if dataset_utils.has_labels(dataset_dir):
        labels_to_names = dataset_utils.read_label_file(dataset_dir)
    # else:
    #     labels_to_names = create_readable_names_for_imagenet_labels()
    #     dataset_utils.write_label_file(labels_to_names, dataset_dir)

    return slim.dataset.Dataset(data_sources=file_pattern,
                                reader=reader,
                                decoder=decoder,
                                num_samples=split_to_sizes[split_name],
                                items_to_descriptions=items_to_descriptions,
                                num_classes=num_classes,
                                labels_to_names=labels_to_names)
Exemple #23
0
def style_image_inputs(style_dataset_file,
                       batch_size=None,
                       image_size=None,
                       square_crop=False,
                       shuffle=True):
    """Loads a batch of random style image given the path of tfrecord dataset.

  Args:
    style_dataset_file: str, path to the tfrecord dataset of style files.
        The dataset is produced via the create_style_dataset.py script and is
        made of Example protobufs with the following features:
        * 'image_raw': byte encoding of the JPEG string of the style image.
        * 'label': integer identifier of the style image in [0, N - 1], where
              N is the number of examples in the dataset.
        * 'vgg_16/<LAYER_NAME>': Gram matrix at layer <LAYER_NAME> of the VGG-16
              network (<LAYER_NAME> in {conv,pool}{1,2,3,4,5}) for the style
              image.
    batch_size: int. If provided, batches style images. Defaults to None.
    image_size: int. The images will be resized bilinearly so that the smallest
        side has size image_size. Defaults to None.
    square_crop: bool. If True, square-crops to [image_size, image_size].
        Defaults to False.
    shuffle: bool, whether to shuffle style files at random. Defaults to True.

  Returns:
    If batch_size is defined, a 4-D tensor of shape [batch_size, ?, ?, 3] with
    values in [0, 1] for the style image, and 1-D tensor for the style label.

  Raises:
    ValueError: if center cropping is requested but no image size is provided,
        or if batch size is specified but center-cropping is not requested.
  """
    vgg_layers = [
        'vgg_16/conv1', 'vgg_16/pool1', 'vgg_16/conv2', 'vgg_16/pool2',
        'vgg_16/conv3', 'vgg_16/pool3', 'vgg_16/conv4', 'vgg_16/pool4',
        'vgg_16/conv5', 'vgg_16/pool5'
    ]

    if square_crop and image_size is None:
        raise ValueError('center-cropping requires specifying the image size.')
    if batch_size is not None and not square_crop:
        raise ValueError('batching requires center-cropping.')

    with tf.name_scope('style_image_processing'):
        filename_queue = tf.train.string_input_producer([style_dataset_file],
                                                        shuffle=False,
                                                        capacity=1,
                                                        name='filename_queue')
        if shuffle:
            examples_queue = tf.RandomShuffleQueue(
                capacity=64,
                min_after_dequeue=32,
                dtypes=[tf.string],
                name='random_examples_queue')
        else:
            examples_queue = tf.FIFOQueue(capacity=64,
                                          dtypes=[tf.string],
                                          name='fifo_examples_queue')
        reader = tf.TFRecordReader()
        _, value = reader.read(filename_queue)
        enqueue_ops = [examples_queue.enqueue([value])]
        tf.train.queue_runner.add_queue_runner(
            tf.train.queue_runner.QueueRunner(examples_queue, enqueue_ops))
        example_serialized = examples_queue.dequeue()
        features = tf.parse_single_example(
            example_serialized,
            features={
                'label': tf.FixedLenFeature([], tf.int64),
                'image_raw': tf.FixedLenFeature([], tf.string),
                'vgg_16/conv1': tf.FixedLenFeature([64, 64], tf.float32),
                'vgg_16/pool1': tf.FixedLenFeature([64, 64], tf.float32),
                'vgg_16/conv2': tf.FixedLenFeature([128, 128], tf.float32),
                'vgg_16/pool2': tf.FixedLenFeature([128, 128], tf.float32),
                'vgg_16/conv3': tf.FixedLenFeature([256, 256], tf.float32),
                'vgg_16/pool3': tf.FixedLenFeature([256, 256], tf.float32),
                'vgg_16/conv4': tf.FixedLenFeature([512, 512], tf.float32),
                'vgg_16/pool4': tf.FixedLenFeature([512, 512], tf.float32),
                'vgg_16/conv5': tf.FixedLenFeature([512, 512], tf.float32),
                'vgg_16/pool5': tf.FixedLenFeature([512, 512], tf.float32)
            })
        image = tf.image.decode_jpeg(features['image_raw'])
        label = features['label']
        gram_matrices = [features[vgg_layer] for vgg_layer in vgg_layers]
        image.set_shape([None, None, 3])

        if image_size:
            if square_crop:
                image = _aspect_preserving_resize(image, image_size + 2)
                image = _central_crop([image], image_size, image_size)[0]
                image.set_shape([image_size, image_size, 3])
            else:
                image = _aspect_preserving_resize(image, image_size)

        image = tf.to_float(image) / 255.0

        if batch_size is None:
            image = tf.expand_dims(image, 0)
        else:
            image_label_gram_matrices = tf.train.batch([image, label] +
                                                       gram_matrices,
                                                       batch_size=batch_size)
            image, label = image_label_gram_matrices[:2]
            gram_matrices = image_label_gram_matrices[2:]

        gram_matrices = dict([
            (vgg_layer, gram_matrix)
            for vgg_layer, gram_matrix in zip(vgg_layers, gram_matrices)
        ])
        return image, label, gram_matrices
def get_split(split_name, dataset_dir, file_pattern=None, reader=None):
    """Gets a dataset tuple with instructions for reading ImageNet.

  Args:
    split_name: A train/test split name.
    dataset_dir: The base directory of the dataset sources.
    file_pattern: The file pattern to use when matching the dataset sources.
      It is assumed that the pattern contains a '%s' string so that the split
      name can be inserted.
    reader: The TensorFlow reader type.

  Returns:
    A `Dataset` namedtuple.

  Raises:
    ValueError: if `split_name` is not a valid train/test split.
  """
    if split_name not in _SPLITS_TO_SIZES:
        raise ValueError('split name %s was not recognized.' % split_name)

    if not file_pattern:
        file_pattern = _FILE_PATTERN
    file_pattern = os.path.join(dataset_dir, file_pattern % split_name)

    # Allowing None in the signature so that dataset_factory can use the default.
    if reader is None:
        reader = tf.TFRecordReader

    keys_to_features = {
        'image/encoded':
        tf.FixedLenFeature((), tf.string, default_value=''),
        'image/format':
        tf.FixedLenFeature((), tf.string, default_value='jpeg'),
        'image/class/label':
        tf.FixedLenFeature([], dtype=tf.int64, default_value=-1),
        'image/class/text':
        tf.FixedLenFeature([], dtype=tf.string, default_value=''),
        'image/object/bbox/xmin':
        tf.VarLenFeature(dtype=tf.float32),
        'image/object/bbox/ymin':
        tf.VarLenFeature(dtype=tf.float32),
        'image/object/bbox/xmax':
        tf.VarLenFeature(dtype=tf.float32),
        'image/object/bbox/ymax':
        tf.VarLenFeature(dtype=tf.float32),
        'image/object/class/label':
        tf.VarLenFeature(dtype=tf.int64),
    }

    items_to_handlers = {
        'image':
        slim.tfexample_decoder.Image('image/encoded', 'image/format'),
        'label':
        slim.tfexample_decoder.Tensor('image/class/label'),
        'label_text':
        slim.tfexample_decoder.Tensor('image/class/text'),
        'object/bbox':
        slim.tfexample_decoder.BoundingBox(['ymin', 'xmin', 'ymax', 'xmax'],
                                           'image/object/bbox/'),
        'object/label':
        slim.tfexample_decoder.Tensor('image/object/class/label'),
    }

    decoder = slim.tfexample_decoder.TFExampleDecoder(keys_to_features,
                                                      items_to_handlers)

    labels_to_names = None
    if LOAD_READABLE_NAMES:
        if dataset_utils.has_labels(dataset_dir):
            labels_to_names = dataset_utils.read_label_file(dataset_dir)
        else:
            labels_to_names = create_readable_names_for_imagenet_labels()
            dataset_utils.write_label_file(labels_to_names, dataset_dir)

    return slim.dataset.Dataset(data_sources=file_pattern,
                                reader=reader,
                                decoder=decoder,
                                num_samples=_SPLITS_TO_SIZES[split_name],
                                items_to_descriptions=_ITEMS_TO_DESCRIPTIONS,
                                num_classes=_NUM_CLASSES,
                                labels_to_names=labels_to_names)
Exemple #25
0
import cv2

MOVING_AVERAGE_DECAY = 0.99
EVAL_INTERVAL_SECS = 10
image_size = 128
batch_size = 200

files = tf.train.match_filenames_once("train.tfrecords")
filename_queue = tf.train.string_input_producer(files, shuffle=True)
# filename_queue = tf.train.string_input_producer(["dog_train.tfrecords0"]) #读入流中
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)  # 返回文件名和文件
features = tf.parse_single_example(serialized_example,
                                   features={
                                       'height':
                                       tf.FixedLenFeature([], tf.int64),
                                       'width':
                                       tf.FixedLenFeature([], tf.int64),
                                       'label':
                                       tf.FixedLenFeature([], tf.int64),
                                       'img_raw':
                                       tf.FixedLenFeature([], tf.string),
                                       'channels':
                                       tf.FixedLenFeature([], tf.int64),
                                   })  # 取出包含image和label的feature对象
image, label = features['img_raw'], features['label']
height, width = features['height'], features['width']
height = tf.cast(height, tf.uint8)
width = tf.cast(width, tf.float32)
channels = features['channels']
decoded_image = tf.decode_raw(image, tf.uint8)
Exemple #26
0
import tensorflow_transform as tft
from string import ascii_lowercase
from apache_beam.io import tfrecordio
from tensorflow_transform import coders
from tensorflow_transform.beam import impl as beam_impl
from tensorflow_transform.beam.tft_beam_io import transform_fn_io
from tensorflow_transform.tf_metadata import dataset_metadata, metadata_io,dataset_schema 

DELIMITERS_WORDS=' '
MAX_WORD_LEN=15
MAX_SENTENCE_LEN=25

# IT IS EXTREMELY COSTFUL TO HAVE TO LONG WORDS/SENTENCES

TRAIN_DATA_SCHEMA = dataset_schema.from_feature_spec({
    'id': tf.FixedLenFeature(shape=[], dtype=tf.float32),
    'text': tf.FixedLenFeature(shape=[], dtype=tf.string),
    'labels': tf.FixedLenFeature(shape=[MAX_SENTENCE_LEN], dtype=tf.int64),
    'label': tf.FixedLenFeature(shape=[], dtype=tf.string),
    "chars" : tf.FixedLenFeature(shape=[MAX_SENTENCE_LEN,MAX_WORD_LEN], dtype=tf.int64),
    'label_length': tf.FixedLenFeature(shape=[], dtype=tf.int64),
    'sentence_length': tf.FixedLenFeature(shape=[], dtype=tf.int64),
    'chars_in_word': tf.FixedLenFeature(shape=[MAX_SENTENCE_LEN], dtype=tf.int64),
})


train_metadata = dataset_metadata.DatasetMetadata(schema=TRAIN_DATA_SCHEMA)
OUTPUT_FILE_TRAIN="train_records.tfrecords"
MAPPING = {a:index for index,a in enumerate(ascii_lowercase + ascii_lowercase.upper())}
UNKONWN = len(MAPPING)
PADD_VALUE_CHAR = UNKONWN+1
Exemple #27
0
def main(_):
    if len(sys.argv) < 2 or sys.argv[-1].startswith('-'):
        print(
            'Usage: mnist_export.py [--training_iteration=x] '
            '[--model_version=y] export_dir')
        sys.exit(-1)
    if FLAGS.training_iteration <= 0:
        print 'Please specify a positive value for training iteration.'
        sys.exit(-1)
    if FLAGS.model_version <= 0:
        print 'Please specify a positive value for version number.'
        sys.exit(-1)

    # Train model
    print 'Training model...'
    mnist = mnist_input_data.read_data_sets(FLAGS.work_dir, one_hot=True)
    sess = tf.InteractiveSession()
    serialized_tf_example = tf.placeholder(tf.string, name='tf_example')
    feature_configs = {
        'x': tf.FixedLenFeature(shape=[784], dtype=tf.float32),
    }
    tf_example = tf.parse_example(serialized_tf_example, feature_configs)
    x = tf.identity(tf_example['x'],
                    name='x')  # use tf.identity() to assign name
    y_ = tf.placeholder('float', shape=[None, 10])
    w = tf.Variable(tf.zeros([784, 10]))
    b = tf.Variable(tf.zeros([10]))
    sess.run(tf.global_variables_initializer())
    y = tf.nn.softmax(tf.matmul(x, w) + b, name='y')
    cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
    train_step = tf.train.GradientDescentOptimizer(0.01).minimize(
        cross_entropy)
    values, indices = tf.nn.top_k(y, 10)
    table = tf.contrib.lookup.index_to_string_table_from_tensor(
        tf.constant([str(i) for i in xrange(10)]))
    prediction_classes = table.lookup(tf.to_int64(indices))
    for _ in range(FLAGS.training_iteration):
        batch = mnist.train.next_batch(50)
        train_step.run(feed_dict={x: batch[0], y_: batch[1]})
    correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))
    print 'training accuracy %g' % sess.run(accuracy,
                                            feed_dict={
                                                x: mnist.test.images,
                                                y_: mnist.test.labels
                                            })
    print 'Done training!'

    # Export model
    # WARNING(break-tutorial-inline-code): The following code snippet is
    # in-lined in tutorials, please update tutorial documents accordingly
    # whenever code changes.
    export_path_base = sys.argv[-1]
    export_path = os.path.join(tf.compat.as_bytes(export_path_base),
                               tf.compat.as_bytes(str(FLAGS.model_version)))
    print 'Exporting trained model to', export_path
    builder = tf.saved_model.builder.SavedModelBuilder(export_path)

    # Build the signature_def_map.
    classification_inputs = tf.saved_model.utils.build_tensor_info(
        serialized_tf_example)
    classification_outputs_classes = tf.saved_model.utils.build_tensor_info(
        prediction_classes)
    classification_outputs_scores = tf.saved_model.utils.build_tensor_info(
        values)

    classification_signature = (
        tf.saved_model.signature_def_utils.build_signature_def(
            inputs={
                tf.saved_model.signature_constants.CLASSIFY_INPUTS:
                classification_inputs
            },
            outputs={
                tf.saved_model.signature_constants.CLASSIFY_OUTPUT_CLASSES:
                classification_outputs_classes,
                tf.saved_model.signature_constants.CLASSIFY_OUTPUT_SCORES:
                classification_outputs_scores
            },
            method_name=tf.saved_model.signature_constants.CLASSIFY_METHOD_NAME
        ))

    tensor_info_x = tf.saved_model.utils.build_tensor_info(x)
    tensor_info_y = tf.saved_model.utils.build_tensor_info(y)

    prediction_signature = (
        tf.saved_model.signature_def_utils.build_signature_def(
            inputs={'images': tensor_info_x},
            outputs={'scores': tensor_info_y},
            method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME)
    )

    legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op')
    builder.add_meta_graph_and_variables(
        sess, [tf.saved_model.tag_constants.SERVING],
        signature_def_map={
            'predict_images':
            prediction_signature,
            tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
            classification_signature,
        },
        legacy_init_op=legacy_init_op)

    builder.save()

    print 'Done exporting!'
image_width  = 32
image_channel  = 3

class_numbers = 10

#model storage

model_checkpoint_path = join( checkpoint_path, 'model.ckpt')
train_summary_path = join( checkpoint_path, 'train' )
valid_summary_path = join( checkpoint_path, 'valid' )


## data loading
root_path = '/home/rachakra/few_shot_learning/prepare_data/output'
train_tfrecords = join( root_path, 'train_siamese_pair_{0}.tfrecords'.format( sample_per_class ) )
valid_tfrecords = join( root_path, 'siamese_pair_valid.tfrecords' )

## information for parsing the tfrecord

features={'image_one':tf.FixedLenFeature([], tf.string),
    'image_two':tf.FixedLenFeature([], tf.string),\
    'label': tf.FixedLenFeature([], tf.int64 )}

train_parser = Parser( features, image_height, image_width, True )
valid_parser = Parser( features, image_height, image_width, False )


##test files
training_list_file = 'train_raw_list_{0}.txt'.format( sample_per_class )
class_valid_list = join( root_path, 'class_valid.pickle' )
Exemple #29
0
def create_sprite_image(examples):
    """Returns an encoded sprite image for use in Facets Dive.

    Args:
      examples: A list of serialized example protos to get images for.

    Returns:
      An encoded PNG.
    """
    def generate_image_from_thubnails(thumbnails, thumbnail_dims):
        """Generates a sprite atlas image from a set of thumbnails."""
        num_thumbnails = tf.shape(thumbnails)[0].eval()
        images_per_row = int(math.ceil(math.sqrt(num_thumbnails)))
        thumb_height = thumbnail_dims[0]
        thumb_width = thumbnail_dims[1]
        master_height = images_per_row * thumb_height
        master_width = images_per_row * thumb_width
        num_channels = 3
        master = np.zeros([master_height, master_width, num_channels])
        for idx, image in enumerate(thumbnails.eval()):
            left_idx = idx % images_per_row
            top_idx = int(math.floor(idx / images_per_row))
            left_start = left_idx * thumb_width
            left_end = left_start + thumb_width
            top_start = top_idx * thumb_height
            top_end = top_start + thumb_height
            master[top_start:top_end, left_start:left_end, :] = image
        return tf.image.encode_png(master)

    image_feature_name = 'image/encoded'
    sprite_thumbnail_dim_px = 32
    with tf.compat.v1.Session():
        keys_to_features = {
            image_feature_name:
            tf.FixedLenFeature((), tf.string, default_value=''),
        }
        parsed = tf.parse_example(examples, keys_to_features)
        images = tf.zeros([1, 1, 1, 1], tf.float32)
        i = tf.constant(0)
        thumbnail_dims = (sprite_thumbnail_dim_px, sprite_thumbnail_dim_px)
        num_examples = tf.constant(len(examples))
        encoded_images = parsed[image_feature_name]

        # Loop over all examples, decoding the image feature value, resizing
        # and appending to a list of all images.
        def loop_body(i, encoded_images, images):
            encoded_image = encoded_images[i]
            image = tf.image.decode_jpeg(encoded_image, channels=3)
            resized_image = tf.image.resize(image, thumbnail_dims)
            expanded_image = tf.expand_dims(resized_image, 0)
            images = tf.cond(tf.equal(i, 0), lambda: expanded_image,
                             lambda: tf.concat([images, expanded_image], 0))
            return i + 1, encoded_images, images

        loop_out = tf.while_loop(
            lambda i, encoded_images, images: tf.less(i, num_examples),
            loop_body, [i, encoded_images, images],
            shape_invariants=[
                i.get_shape(),
                encoded_images.get_shape(),
                tf.TensorShape(None)
            ])

        # Create the single sprite atlas image from these thumbnails.
        sprite = generate_image_from_thubnails(loop_out[2], thumbnail_dims)
        return sprite.eval()
Exemple #30
0
def Train(graph, Batch_size, Iteration):
    filenames = [("train_1.tfrecords")]
    print(filenames)
    filenames_cross = ["train_2.tfrecords"]
    filename_queue = tf.train.string_input_producer(filenames)
    # Tensorflow需要队列流输入数据
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    # tf.parse_single_example为解析器
    features = tf.parse_single_example(serialized_example,
                                       features={
                                           "Mat":
                                           tf.FixedLenFeature([], tf.string),
                                           "label":
                                           tf.FixedLenFeature([], tf.int64),
                                       })

    Mat_32 = tf.decode_raw(features["Mat"], tf.float64)
    Mat_32 = tf.reshape(Mat_32, [32, 32, 1])

    Label_32 = tf.cast(features["label"], tf.float32)

    # Mat_batch,Label64_batch,Label32_batch,Label32_Batch = tf.train.batch\
    #                ([Mat_64, Label_64,Label_32,Label_32],batch_size= Batch_size,capacity=300,num_threads= 1)
    # tf.train.shuffle_batch()这个函数对读取到的数据进行了batch处理,这样更有利于后续的训练。

    Mat_batch, Label32_batch = tf.train.shuffle_batch \
        ([Mat_32, Label_32], batch_size=Batch_size, capacity=3 * Batch_size, min_after_dequeue=5,
         num_threads=32)
    print("\n--------- finish reading train data-----------")

    filename_queue_cross = tf.train.string_input_producer(filenames_cross)
    reader_cross = tf.TFRecordReader()
    _, serialized_example_cross = reader_cross.read(filename_queue_cross)
    features_cross = tf.parse_single_example(serialized_example_cross,
                                             features={
                                                 "Mat":
                                                 tf.FixedLenFeature([],
                                                                    tf.string),
                                                 "label":
                                                 tf.FixedLenFeature([],
                                                                    tf.int64),
                                             })

    Mat_32_cross = tf.decode_raw(features_cross["Mat"], tf.float64)
    Mat_32_cross = tf.reshape(Mat_32_cross, [32, 32, 1])

    Label_32_cross = tf.cast(features_cross["label"], tf.float32)

    Mat_batch_cross, Label32_batch_cross = tf.train.shuffle_batch \
        ([Mat_32_cross, Label_32_cross], batch_size=Batch_size,
         capacity=Batch_size * 3, min_after_dequeue=5,
         num_threads=32)
    # saver = tf.train.Saver()
    # print("Mat_Batttt",Mat_Batch)
    with tf.Session() as sess:
        # 开启协调器
        coord = tf.train.Coordinator()
        # 使用start_queue_runners 启动队列填充
        # 一定要开启队列,要不然是空的
        threads = tf.train.start_queue_runners(sess, coord)
        initglo = tf.global_variables_initializer()
        initloc = tf.local_variables_initializer()
        sess.run(initglo)
        sess.run(initloc)
        tf.local_variables_initializer().run()
        epoch = 9
        learning_rate = 0.01
        for j in range(epoch):
            if j % 3 == 0:
                learning_rate = learning_rate * 0.1
            print(learning_rate)
            acc = 0
            loss = 0
            acc_cross = 0
            loss_cross = 0
            for i in range(Iteration):
                # 这句话的意思是从队列里拿出指定批次的数据
                is_training = True
                mat_32, label_32 = sess.run([Mat_batch, Label32_batch])
                mat_32 = mat_32.reshape(Batch_size, 32, 32, 1)
                # print("Mat_64 is ",Mat_64)
                # print("Label_64 is ",Label_64)
                mat_32 = mat_32.astype('float32')
                label_32 = label_32.astype("float32")
                label_32 = label_32.reshape(Batch_size, 1)

                for b in range(Batch_size):
                    mat_32[b] = LoadData.Normalize(mat_32[b])

                # LOSS_64, acc_rate64, Pre_lable_64, _ = sess.run(
                #     [graph["LOSS"], graph["acc"], graph["Pre"], graph["Train"]],
                #     feed_dict={
                #         graph["inputs_Mat"]: mat_64,
                #         graph["ys_label"]: label_64,
                #         graph['is_training']: is_training,
                #         graph["is_64"]: 1,
                #         graph["is_32"]: 0,
                #         graph["kp"]: 0.5,
                #         graph["ln"]:learning_rate,
                #     })

                # LOSS_32, acc_rate32, Pre_lable_32, _ = sess.run(
                #     [graph["LOSS"], graph["acc"], graph["Pre"], graph["Train"]],
                #     feed_dict={
                #         graph["inputs_Mat"]: mat_32,
                #         graph["ys_label"]: label_32,
                #         graph['is_training']: is_training,
                #         graph["is_64"]: 0,
                #         graph["is_32"]: 1,
                #         graph["kp"]: 0.5,
                #         graph["ln"]: learning_rate,
                #     })
                # print(label_32)
                LOSS_32, acc_rate32, Pre_lable_32, _ = sess.run(
                    [
                        graph["LOSS"], graph["acc"], graph["Pre"],
                        graph["Train"]
                    ],
                    feed_dict={
                        graph["inputs_Mat"]: mat_32,
                        graph["ys_label"]: label_32,
                        graph['is_training']: is_training,
                        graph["kp"]: 0.5,
                        graph["ln"]: learning_rate,
                    })

                if i % 100 == 0:
                    is_training = False
                    print("\n------------- Iteration %d --------------" % (i))
                    # # print("LOSS64 is ", LOSS_64)
                    # # print("LOSS32 is ", LOSS_32)
                    # print("LOSS16 is ", LOSS_16)
                    # # print("acc_rate64 is : ", acc_rate64)
                    # # print("acc_rate32 is : ", acc_rate32)
                    # print("acc_rate16 is : ", acc_rate16)

                    # # 把输出写入到文件里
                    # stdout_backup = sys.stdout
                    # log_file = open(YUV + "_RunDetail.log", "a")
                    # sys.stdout = log_file
                    # print("--------------- Iteration %d ---------------" % (i))
                    #
                    # print("LOSS64 is ", LOSS_64)
                    # print("LOSS32 is ", LOSS_32)
                    # print("LOSS16 is ", LOSS_16)
                    # print("acc_rate64 is : ", acc_rate64)
                    # print("acc_rate32 is : ", acc_rate32)
                    # print("acc_rate16 is : ", acc_rate16)
                    mat_cross32, label_cross32 = sess.run(
                        [Mat_batch_cross, Label32_batch_cross])
                    mat_cross32 = mat_cross32.reshape(Batch_size, 32, 32, 1)
                    mat_cross32 = mat_cross32.astype("float32")
                    for b in range(Batch_size):
                        mat_cross32[b] = LoadData.Normalize(mat_cross32[b])

                    label_cross32 = label_cross32.astype("float32")
                    label_cross32 = label_cross32.reshape(Batch_size, 1)

                    LOSS_ceoss32, acc_rate_cross32, Pre_lable_cross32 = sess.run(
                        [graph["LOSS"], graph["acc"], graph["Pre"]],
                        feed_dict={
                            graph["inputs_Mat"]: mat_cross32,
                            graph["ys_label"]: label_cross32,
                            graph['is_training']: is_training,
                            graph["kp"]: 1.0,
                        })
                    acc_cross = acc_cross + acc_rate_cross32
                    loss_cross = loss_cross + LOSS_ceoss32
                    loss = loss + LOSS_32
                    acc = acc + acc_rate32
            print("*************train*************")
            print("acc:" + str(acc / 60))
            print("loss:" + str(loss / 60))
            print("*************cross*************")
            print("acc:" + str(acc_cross / 60))
            print("loss:" + str(loss_cross / 60))
            # sum16 = 0
            # a16 = 0
            # for e in range(Batch_size):
            #     if label_cross16[e][0] == 1:
            #         sum16 += 1
            #         if Pre_lable_cross16[e][0] == 1:
            #             a16 += 1
            # if sum16 != 0:
            #     print("reCall 16 is : ", a16 / sum16)
            # sum16 = 0
            # a16 = 0
            # for e in range(Batch_size):
            #     if label_cross16[e][0] == 0:
            #         sum16 += 1
            #         if Pre_lable_cross16[e][0] == 0:
            #             a16 += 1
            # if sum16 != 0:
            #     print("Call 16 is : ", a16 / sum16)

            if j == 8:
                print("save the model finally:" + str(i))
                var_list = [
                    var for var in tf.global_variables()
                    if "moving" in var.name
                ]
                var_list += tf.trainable_variables()
                saver = tf.train.Saver(var_list=var_list, max_to_keep=20)
                Write_List = ['X', 'is_train', 'kp', 'y', 'acc', 'output']
                constant_graph = graph_util.convert_variables_to_constants \
                    (sess, sess.graph_def, Write_List)
                with tf.gfile.FastGFile(pb_file_path, mode='wb') as f:
                    f.write(constant_graph.SerializeToString())
                saver.save(sess, "model/Demo-model")
                # saver.save(sess, "./model/Demo-model-one")
                print("save the cross model")

        coord.request_stop()
        print("program ending")
        coord.join(threads)