def self_test(): """Test the translation model.""" with tf.Session() as sess: print("Self-test for neural translation model.") # Create model with vocabularies of 10, 2 small buckets, 2 layers of 32. model = seq2seq_model.Seq2SeqModel(10, 10, [(3, 3), (6, 6)], 32, 2, 5.0, 32, 0.3, 0.99, num_samples=8) sess.run(tf.global_variables_initialize()) # Fake data set for both the (3, 3) and (6, 6) bucket. data_set = ([([1, 1], [2, 2]), ([3, 3], [4]), ([5], [6])], [([1, 1, 1, 1, 1], [2, 2, 2, 2, 2]), ([3, 3, 3], [5, 6])]) for _ in xrange(5): # Train the fake model for 5 steps. bucket_id = random.choice([0, 1]) encoder_inputs, decoder_inputs, target_weights = model.get_batch( data_set, bucket_id) model.step(sess, encoder_inputs, decoder_inputs, target_weights, bucket_id, False)
0, [self.actions[rindex] - 1]] = self.rewards[rindex] + self.discount * next_state_max_Q inputs[i] = current_input_state targets[i] = target return inputs, targets memory = ReplayMemory(env.nx, env.ny, max_memory, gamma) win_cnt = 0 sess = tf.InteractiveSession() sess.run(tf.global_variables_initialize()) saver = tf.train.Saver() for episode in range(n_episodes): err = 0 s = env.reset() for t in range(max_steps): if np.random.rand() < epsilon: a = np.random.randint(env.na) # random action else: q = sess.run( y_hat, feed_dict={x: np.reshape(s, [1, env.ny, env.nx, env.nf])}) a = np.random.choice(np.where(q[0] == np.max(q))[0]) sn, r, terminal, _, _, _, _, _, _, _, _ = env.run( a - 1) # action to take is -1, 0, 1
def style_loss(sess,model): pass def content_loss(sess,model): pass IMAGE_WIDTH=248 IMAGE_HEIGHT=248 learning_rate=0.1 total_loss=style_weight*style_loss(sess,model)+contents_weight*content_loss(sess,model) optimizer=tf.train.AdamOptimizer(2.0) train_step=optimizer.minimize(total_loss) init=tf.global_variables_initialize() with tf.Session() as sess: sess.run(init) sess. def train(): pass # The network has two loss functions # one is style loss and the other is contents loss # contents_image=np.fromfile(contents_image_filename) weights={ if __name__=='__main__':
def initialize(self): self.sess = tf.Session() self.sess.run(tf.global_variables_initialize())