Exemple #1
0
def lookup_char_emb(text,c2v_vocab, c2v_emb, dim_c2v_emb):
    str_tensor = tf.string_split(text)
    str_split = tf.sparse_reshape(str_tensor,[-1])
    str_split,text_mask = tf.sparse_fill_empty_rows(str_split,"")
    #return str_split
    #str_split = tf.sparse_tensor_to_dense(str_split,default_value="")
    #char_split = tf.string_split(str_split.values,'')
    char_split = tf.string_split(str_split.values,'')
    #return char_split
    #return tf.SparseTensor(indices=tf.stack([str_split.indices,res.indices],axis=1),values = res.values, dense_shape=tf.stack([str_split.dense_shape[0],str_split.dense_shape[1],res.dense_shape[0], res.dense_shape[1]]))
    #return char_split
    #char_tensor_indices = tf.transpose(tf.stack([tf.gather(str_split.indices[:,0],char_split.indices[:,0]),tf.gather(str_split.indices[:,1],char_split.indices[:,0])]))
    char_tensor = tf.SparseTensor(indices = char_split.indices, values = c2v_vocab.lookup(char_split.values), dense_shape = char_split.dense_shape)
    #return char_tensor
    #char_tensor = tf.SparseTensor(indices = char_split.indices, values = char_dict.lookup(char_split.values), dense_shape = char_split.dense_shape)
    char_tensor_reshape = tf.sparse_reshape(char_tensor,[-1])
    char_tensor,term_mask = tf.sparse_fill_empty_rows(char_tensor_reshape,0)
    #return char_tensor
    char_vecs = tf.nn.embedding_lookup_sparse(c2v_emb, char_tensor, None, combiner='sum')
    char_vecs = tf.where(~term_mask, char_vecs, tf.zeros_like(char_vecs))
    #return char_vecs
    term_char_vecs = tf.reshape(char_vecs, shape = tf.stack([tf.shape(text)[0],tf.cast(tf.reduce_max(str_tensor.indices[:,1])+1,tf.int32),-1,tf.shape(char_vecs)[-1]]))
    term_char_mask_tmp = tf.reduce_sum(term_char_vecs,axis=-1)
    term_char_mask = ~tf.equal(term_char_mask_tmp,0)
    term_char_len = tf.cast(tf.count_nonzero(term_char_mask,axis=-1),tf.int32)
    text_mask = ~tf.equal(tf.reduce_sum(term_char_mask_tmp,axis=-1),0)
    text_len = tf.cast(tf.count_nonzero(text_mask,axis=-1),tf.int32)
    return term_char_vecs, term_char_mask, term_char_len, text_mask, text_len
Exemple #2
0
def xletter_feature_extractor(text,model_prefix,input_mode, op_dict=None,xletter_cnt=None,win_size=None,dim_xletter_emb=None):
    with tf.variable_scope("xletter_layer", reuse=tf.AUTO_REUSE):
        if input_mode=='mstf':
            xletter_emb = tf.get_variable(name='xletter_emb_' + model_prefix, shape = [xletter_cnt * win_size, dim_xletter_emb])
            indices, ids, values, offsets = mstf.dssm_xletter(input=text, win_size=win_size, dict_handle=op_dict)
            offsets_to_dense = tf.segment_sum(tf.ones_like(offsets), offsets)
            batch_id = tf.cumsum(offsets_to_dense[:-1])
            index_tensor = tf.concat([tf.expand_dims(batch_id,axis=-1), tf.expand_dims(indices,axis=-1)],axis=-1)
            value_tensor = ids
            dense_shape = tf.concat([tf.shape(offsets),tf.expand_dims(tf.reduce_max(indices) + 1,axis=-1)],axis=0)
            text_tensor = tf.SparseTensor(indices=tf.cast(index_tensor,tf.int64), values = value_tensor, dense_shape=tf.cast(dense_shape,tf.int64))
            #conv
            text_tensor = tf.sparse_reshape(text_tensor,[-1])
            text_tensor,text_mask = tf.sparse_fill_empty_rows(text_tensor,0)
            text_vecs = tf.nn.embedding_lookup_sparse(xletter_emb,text_tensor,None,combiner='sum')
            text_vecs = tf.where(~text_mask, text_vecs, tf.zeros_like(text_vecs))
            text_vecs = tf.reshape(text_vecs,[-1,tf.reduce_max(indices) + 1,dim_xletter_emb])
            step_mask = ~tf.equal(tf.reduce_sum(text_vecs,axis=2),0)
            sequence_length = tf.cast(tf.count_nonzero(step_mask,axis=1),tf.int32)
        elif input_mode=='pyfunc':
            query_split = tf.string_split(text,';')
            term_split = tf.string_split(query_split.values,',')
            xletter_tensor_indices = tf.transpose(tf.stack([tf.gather(query_split.indices[:,0],term_split.indices[:,0]),tf.gather(query_split.indices[:,1],term_split.indices[:,0])]))
            xletter_tensor = tf.SparseTensor(indices = xletter_tensor_indices, values = tf.string_to_number(term_split.values,out_type=tf.int32), dense_shape = query_split.dense_shape)
            xletter_emb = tf.get_variable(name='xletter_emb_' + model_prefix, shape = [xletter_cnt * win_size, dim_xletter_emb])
            xletter_tensor_reshape = tf.sparse_reshape(xletter_tensor,[-1])
            xletter_tensor,text_mask = tf.sparse_fill_empty_rows(xletter_tensor_reshape,0)
            xletter_vecs = tf.nn.embedding_lookup_sparse(xletter_emb, xletter_tensor, None, combiner='sum')
            xletter_vecs = tf.where(~text_mask, xletter_vecs, tf.zeros_like(xletter_vecs))
            text_vecs = tf.reshape(xletter_vecs, shape=tf.stack([-1,tf.reduce_max(query_split.indices[:,1])+1,dim_xletter_emb]))
            step_mask = ~tf.equal(tf.reduce_sum(text_vecs,axis=2),0)
            sequence_length = tf.cast(tf.count_nonzero(step_mask,axis=1),tf.int32)
        elif input_mode=='pyfunc_batch':
            indices, values, dense_shape = tf.py_func(op_dict.batch_xletter_extractor,[text],[tf.int64,tf.int32,tf.int64])
            xletter_tensor = tf.SparseTensor(indices = indices, values = values, dense_shape = dense_shape)
            xletter_emb = tf.get_variable(name='xletter_emb_' + model_prefix, shape = [xletter_cnt * win_size, dim_xletter_emb])
            xletter_tensor_reshape = tf.sparse_reshape(xletter_tensor,[-1])
            xletter_tensor,text_mask = tf.sparse_fill_empty_rows(xletter_tensor_reshape,0)
            xletter_vecs = tf.nn.embedding_lookup_sparse(xletter_emb, xletter_tensor, None, combiner='sum')
            xletter_vecs = tf.where(~text_mask, xletter_vecs, tf.zeros_like(xletter_vecs))
            text_vecs = tf.reshape(xletter_vecs, shape=tf.stack([-1,dense_shape[1],dim_xletter_emb]))
            step_mask = ~tf.equal(tf.reduce_sum(text_vecs,axis=2),0)
            sequence_length = tf.cast(tf.count_nonzero(step_mask,axis=1),tf.int32)
        else:
            NotImplementedError
    return text_vecs, step_mask, sequence_length
Exemple #3
0
def lookup_emb(text_tensor, text_padding, embedding_weight, dim_output):
        #conv
    text_tensor = tf.sparse_reshape(text_tensor,[-1])
    text_tensor,text_mask = tf.sparse_fill_empty_rows(text_tensor,0)
    text_vecs = tf.nn.embedding_lookup_sparse(embedding_weight,text_tensor,None,combiner='sum')
    text_vecs = tf.where(~text_mask, text_vecs, tf.zeros_like(text_vecs))
    text_vecs = tf.reshape(text_vecs,shape=tf.stack([-1,text_padding,dim_output]))
    step_mask = ~tf.equal(tf.reduce_sum(text_vecs,axis=2),0)
    sequence_length = tf.cast(tf.count_nonzero(step_mask,axis=1),tf.int32)
    return text_vecs, step_mask, sequence_length
def sparse_transform(ids, values, weight_shape):
    assert (len(weight_shape) == 2)
    with tf.device('/cpu:0'):
        weights = []
        # change the number of shards of weight.
        num_shards = 1
        assert (weight_shape[0] % num_shards == 0)

        for i in range(0, num_shards):
            weight_i = tf.get_variable(
                "weight_%02d" % i,
                [weight_shape[0] / num_shards] + weight_shape[1:],
                trainable=True,
                initializer=tf.truncated_normal_initializer(stddev=0.1))
            weights.append(weight_i)

    ids, _ = tf.sparse_fill_empty_rows(ids, 0)
    values, _ = tf.sparse_fill_empty_rows(values, 0.0)
    return tf.nn.embedding_lookup_sparse(weights,
                                         ids,
                                         values,
                                         partition_strategy='div',
                                         combiner='sum')
def test_sparse():
    """
    测试SparseTensor。
    :return:
    """
    # 位置索引
    idx = [[0, 0, 0], [0, 1, 0], [1, 0, 3], [1, 1, 2], [1, 1, 3], [1, 2, 1]]
    # 张量值
    val = [0, 10, 103, 112, 113, 114]
    # 张量形状
    shape = [2, 3, 4]

    # 创建稀疏张量
    sp = tf.SparseTensor(idx, val, shape)

    # 将SparseTensor转换为稠密的布尔指示器张量
    si = tf.sparse_to_indicator(sp, 200)
    si_val = si[1, 1, 113]

    test_run_sess("sparse indicator", si)
    test_run_sess("sparse indicator value", si_val)

    # 稀疏张量叠加
    sp1 = tf.SparseTensor([[0, 2], [1, 0], [1, 1]], ['a', 'b', 'c'], [2, 3])
    sp2 = tf.SparseTensor([[0, 1], [0, 2]], ['d', 'e'], [2, 4])
    sp3 = tf.SparseTensor([[0, 1], [0, 2]], ['d', 'e'], [2, 3])
    con1 = tf.sparse_concat(1, [sp1, sp2], name=None)
    con2 = tf.sparse_concat(0, [sp1, sp3], name=None)

    test_run_sess("sparse concat1", con1)
    test_run_sess("sparse concat2", con2)

    # 稀疏张量重排序,成为以行为主的标准排序
    sp4 = tf.SparseTensor([[0, 3], [0, 1], [3, 1], [2, 0]],
                          ['b', 'a', 'd', 'c'], [4, 5])
    rsp4 = tf.sparse_reorder(sp4)

    # 保留部分元素
    to_retain = [True, False, False, True]
    rsp5 = tf.sparse_retain(sp4, to_retain)

    # 填充空行
    rsp6 = tf.sparse_fill_empty_rows(sp4, 'zz')

    test_run_sess("rsp4", rsp4)
    test_run_sess("rsp5", rsp5)
    test_run_sess("rsp6", rsp6)
Exemple #6
0
    def module_fn_with_preprocessing():
        """Spec function for a full-text embedding module with preprocessing."""
        sentences = tf.placeholder(shape=[None],
                                   dtype=tf.string,
                                   name="sentences")
        # Perform a minimalistic text preprocessing by removing punctuation and
        # splitting on spaces.
        normalized_sentences = tf.regex_replace(input=sentences,
                                                pattern=r"\pP",
                                                rewrite="")
        tokens = tf.string_split(normalized_sentences, " ")

        embeddings_var = tf.get_variable(initializer=tf.zeros(
            [vocab_size + num_oov_buckets, embeddings_dim]),
                                         name=EMBEDDINGS_VAR_NAME,
                                         dtype=tf.float32)
        table_initializer = tf.lookup.TextFileInitializer(
            vocabulary_file, tf.string, tf.lookup.TextFileIndex.WHOLE_LINE,
            tf.int64, tf.lookup.TextFileIndex.LINE_NUMBER)
        lookup_table = tf.lookup.StaticVocabularyTable(
            table_initializer, num_oov_buckets=num_oov_buckets)
        sparse_ids = tf.SparseTensor(indices=tokens.indices,
                                     values=lookup_table.lookup(tokens.values),
                                     dense_shape=tokens.dense_shape)

        # In case some of the input sentences are empty before or after
        # normalization, we will end up with empty rows. We do however want to
        # return embedding for every row, so we have to fill in the empty rows with
        # a default.
        sparse_ids, _ = tf.sparse_fill_empty_rows(
            sparse_ids, lookup_table.lookup(tf.constant("")))
        # In case all of the input sentences are empty before or after
        # normalization, we will end up with a SparseTensor with shape [?, 0]. After
        # filling in the empty rows we must ensure the shape is set properly to
        # [?, 1]. At this point, there are no empty rows, so the new shape will be
        # [sparse_ids.dense_shape[0], max(1, sparse_ids.dense_shape[1])].
        sparse_ids = tf.sparse_reset_shape(sparse_ids)

        combined_embedding = tf.nn.embedding_lookup_sparse(
            params=embeddings_var,
            sp_ids=sparse_ids,
            sp_weights=None,
            combiner="sqrtn")

        hub.add_signature("default", {"sentences": sentences},
                          {"default": combined_embedding})
Exemple #7
0
def TextExtract(text,
                win_size,
                dict_handle,
                weight,
                dim_input,
                dim_output,
                max_term_count=12):
    indices, ids, values, offsets = mstf.dssm_xletter(
        input=text,
        win_size=win_size,
        dict_handle=dict_handle,
        max_term_count=max_term_count)
    offsets_to_dense = tf.segment_sum(tf.ones_like(offsets), offsets)
    batch_id = tf.cumsum(offsets_to_dense[:-1])  #dense offset lei jia
    index_tensor = tf.concat(
        [tf.expand_dims(batch_id, axis=-1),
         tf.expand_dims(indices, axis=-1)],
        axis=-1)
    value_tensor = ids
    dense_shape = tf.concat([
        tf.shape(offsets),
        tf.expand_dims(tf.reduce_max(indices) + 1, axis=-1)
    ],
                            axis=0)
    text_tensor = tf.SparseTensor(indices=tf.cast(index_tensor, tf.int64),
                                  values=value_tensor,
                                  dense_shape=tf.cast(dense_shape, tf.int64))

    text_padding = tf.reduce_max(indices) + 1

    text_tensor = tf.sparse_reshape(text_tensor, [-1])
    text_tensor, text_mask = tf.sparse_fill_empty_rows(text_tensor,
                                                       dim_input - 1)
    text_vecs = tf.nn.embedding_lookup_sparse(weight,
                                              text_tensor,
                                              None,
                                              combiner='sum')
    text_vecs = tf.transpose(
        tf.multiply(tf.transpose(text_vecs),
                    1 - tf.cast(text_mask, dtype=tf.float32)))
    text_vecs = tf.reshape(text_vecs, [-1, text_padding, dim_output])
    step_mask = tf.equal(tf.reduce_sum(text_vecs, axis=2), 0)
    step_mask = tf.where(step_mask,
                         -math.inf * tf.ones_like(step_mask, dtype=tf.float32),
                         tf.zeros_like(step_mask, dtype=tf.float32))
    return text_vecs, text_padding, step_mask
    def module_fn_with_preprocessing():  #支持全文本输入,带有预处理的模型
        sentences = tf.placeholder(shape=[None],
                                   dtype=tf.string,
                                   name="sentences")

        #使用正则表达式,删除特殊符号
        normalized_sentences = tf.regex_replace(input=sentences,
                                                pattern=r"\pP",
                                                rewrite="")
        #按照空格分词,得到稀疏矩阵
        tokens = tf.string_split(normalized_sentences, " ")

        embeddings_var = tf.get_variable(  #定义词嵌入变量
            initializer=tf.zeros(
                [vocab_size + num_oov_buckets, embeddings_dim]),
            name='embedding',
            dtype=tf.float32)

        #用字典将词变为词向量
        lookup_table = tf.contrib.lookup.index_table_from_file(
            vocabulary_file=vocabulary_file, num_oov_buckets=num_oov_buckets)

        #将稀疏矩阵用词嵌入转化
        sparse_ids = tf.SparseTensor(indices=tokens.indices,
                                     values=lookup_table.lookup(tokens.values),
                                     dense_shape=tokens.dense_shape)

        #为稀疏矩阵添加空行
        sparse_ids, _ = tf.sparse_fill_empty_rows(
            sparse_ids, lookup_table.lookup(tf.constant("")))

        #sparse_ids = tf.sparse_reset_shape(sparse_ids)
        #结果进行平方和再开根号的规约计算
        combined_embedding = tf.nn.embedding_lookup_sparse(
            params=embeddings_var,
            sp_ids=sparse_ids,
            sp_weights=None,
            combiner="sqrtn")

        #默认都统一使用default签名。如果额外指定,还需要在调用时与其对应
        #输入和输出需要字典形式。可以是多个
        hub.add_signature("default", {"sentences": sentences},
                          {"default": combined_embedding})
Exemple #9
0
  def module_fn_with_preprocessing():
    """Spec function for a full-text embedding module with preprocessing."""
    sentences = tf.placeholder(shape=[None], dtype=tf.string, name="sentences")
    # Perform a minimalistic text preprocessing by removing punctuation and
    # splitting on spaces.
    normalized_sentences = tf.regex_replace(
        input=sentences, pattern=r"\pP", rewrite="")
    tokens = tf.string_split(normalized_sentences, " ")

    # In case some of the input sentences are empty before or after
    # normalization, we will end up with empty rows. We do however want to
    # return embedding for every row, so we have to fill in the empty rows with
    # a default.
    tokens, _ = tf.sparse_fill_empty_rows(tokens, "")
    # In case all of the input sentences are empty before or after
    # normalization, we will end up with a SparseTensor with shape [?, 0]. After
    # filling in the empty rows we must ensure the shape is set properly to
    # [?, 1].
    tokens = tf.sparse_reset_shape(tokens)

    embeddings_var = tf.get_variable(
        initializer=tf.zeros([vocab_size + num_oov_buckets, embeddings_dim]),
        name=EMBEDDINGS_VAR_NAME,
        dtype=tf.float32)
    lookup_table = tf.contrib.lookup.index_table_from_file(
        vocabulary_file=vocabulary_file,
        num_oov_buckets=num_oov_buckets,
    )
    sparse_ids = tf.SparseTensor(
        indices=tokens.indices,
        values=lookup_table.lookup(tokens.values),
        dense_shape=tokens.dense_shape)

    combined_embedding = tf.nn.embedding_lookup_sparse(
        params=embeddings_var,
        sp_ids=sparse_ids,
        sp_weights=None,
        combiner="sqrtn")

    hub.add_signature("default", {"sentences": sentences},
                      {"default": combined_embedding})
Exemple #10
0
def _crnn_model_fn(features, labels, mode, params=None, config=None):
    if isinstance(features, dict):
        features = features['images']
    max_width = params['max_width']
    global_step = tf.train.get_or_create_global_step()
    logging.info("Features {}".format(features.shape))
    features = tf.reshape(features, [params['batch_size'], 32, max_width, 3])
    images = tf.transpose(features, [0, 2, 1, 3])
    logging.info("Images {}".format(images.shape))
    if (mode == tf.estimator.ModeKeys.TRAIN
            or mode == tf.estimator.ModeKeys.EVAL):
        labels = tf.reshape(labels, [params['batch_size'], -1])
        tf.summary.image('image', features)
        idx = tf.where(tf.not_equal(labels, 0))
        sparse_labels = tf.SparseTensor(
            idx, tf.gather_nd(labels, idx),
            [params['batch_size'], params['max_target_seq_length']])
        sparse_labels, _ = tf.sparse_fill_empty_rows(sparse_labels,
                                                     params['num_labels'] - 1)

    # 64 / 3 x 3 / 1 / 1
    conv1 = tf.layers.conv2d(inputs=images,
                             filters=64,
                             kernel_size=(3, 3),
                             padding="same",
                             activation=tf.nn.relu)
    logging.info("conv1 {}".format(conv1.shape))

    # 2 x 2 / 1
    pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2)
    logging.info("pool1 {}".format(pool1.shape))

    # 128 / 3 x 3 / 1 / 1
    conv2 = tf.layers.conv2d(inputs=pool1,
                             filters=128,
                             kernel_size=(3, 3),
                             padding="same",
                             activation=tf.nn.relu)
    logging.info("conv2 {}".format(conv2.shape))
    # 2 x 2 / 1
    pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2)
    logging.info("pool2 {}".format(pool2.shape))

    # 256 / 3 x 3 / 1 / 1
    conv3 = tf.layers.conv2d(inputs=pool2,
                             filters=256,
                             kernel_size=(3, 3),
                             padding="same",
                             activation=tf.nn.relu)
    logging.info("conv3 {}".format(conv3.shape))

    # Batch normalization layer
    bnorm1 = tf.layers.batch_normalization(conv3)

    # 256 / 3 x 3 / 1 / 1
    conv4 = tf.layers.conv2d(inputs=bnorm1,
                             filters=256,
                             kernel_size=(3, 3),
                             padding="same",
                             activation=tf.nn.relu)
    logging.info("conv4 {}".format(conv4.shape))

    # 1 x 2 / 1
    pool3 = tf.layers.max_pooling2d(inputs=conv4,
                                    pool_size=[2, 2],
                                    strides=[1, 2],
                                    padding="same")
    logging.info("pool3 {}".format(pool3.shape))

    # 512 / 3 x 3 / 1 / 1
    conv5 = tf.layers.conv2d(inputs=pool3,
                             filters=512,
                             kernel_size=(3, 3),
                             padding="same",
                             activation=tf.nn.relu)
    logging.info("conv5 {}".format(conv5.shape))

    # Batch normalization layer
    bnorm2 = tf.layers.batch_normalization(conv5)

    # 512 / 3 x 3 / 1 / 1
    conv6 = tf.layers.conv2d(inputs=bnorm2,
                             filters=512,
                             kernel_size=(3, 3),
                             padding="same",
                             activation=tf.nn.relu)
    logging.info("conv6 {}".format(conv6.shape))

    # 1 x 2 / 2
    pool4 = tf.layers.max_pooling2d(inputs=conv6,
                                    pool_size=[2, 2],
                                    strides=[1, 2],
                                    padding="same")
    logging.info("pool4 {}".format(pool4.shape))
    # 512 / 2 x 2 / 1 / 0
    conv7 = tf.layers.conv2d(inputs=pool4,
                             filters=512,
                             kernel_size=(2, 2),
                             padding="valid",
                             activation=tf.nn.relu)
    logging.info("conv7 {}".format(conv7.shape))

    reshaped_cnn_output = tf.reshape(conv7, [params['batch_size'], -1, 512])
    rnn_inputs = tf.transpose(reshaped_cnn_output, perm=[1, 0, 2])

    max_char_count = rnn_inputs.get_shape().as_list()[0]
    logging.info("max_char_count {}".format(max_char_count))
    input_lengths = tf.zeros([params['batch_size']],
                             dtype=tf.int32) + max_char_count
    logging.info("InpuLengh {}".format(input_lengths.shape))

    if params['rnn_type'] == 'CudnnLSTM':
        rnn_output, rnn_state, new_states = _cudnn_lstm(
            mode, params, rnn_inputs)
    elif params['rnn_type'] == 'CudnnCompatibleLSTM':
        rnn_output, rnn_state, new_states = _cudnn_lstm_compatible(
            params, rnn_inputs)
    else:
        rnn_output, rnn_state, new_states = _basic_lstm(
            mode, params, rnn_inputs)

    with tf.variable_scope('Output_layer'):
        logits = tf.layers.dense(
            rnn_output,
            params['num_labels'],
            kernel_initializer=tf.contrib.layers.xavier_initializer())

    if params['beam_search_decoder']:
        decoded, _log_prob = tf.nn.ctc_beam_search_decoder(
            logits, input_lengths)
    else:
        decoded, _log_prob = tf.nn.ctc_greedy_decoder(logits, input_lengths)

    prediction = tf.to_int32(decoded[0])

    metrics = {}
    if (mode == tf.estimator.ModeKeys.TRAIN
            or mode == tf.estimator.ModeKeys.EVAL):
        levenshtein = tf.edit_distance(prediction,
                                       sparse_labels,
                                       normalize=True)
        errors_rate = tf.metrics.mean(levenshtein)
        mean_error_rate = tf.reduce_mean(levenshtein)
        metrics['Error_Rate'] = errors_rate
        if mode == tf.estimator.ModeKeys.TRAIN:
            tf.summary.scalar('Error_Rate', mean_error_rate)
        with tf.name_scope('CTC'):
            ctc_loss = tf.nn.ctc_loss(sparse_labels,
                                      logits,
                                      input_lengths,
                                      ignore_longer_outputs_than_inputs=True)
            mean_loss = tf.reduce_mean(
                tf.truediv(ctc_loss, tf.to_float(input_lengths)))
            loss = mean_loss
    else:
        loss = None

    training_hooks = []

    if mode == tf.estimator.ModeKeys.TRAIN:

        opt = tf.train.AdamOptimizer(params['learning_rate'])
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        with tf.control_dependencies(update_ops):
            if params['grad_clip'] is None:
                train_op = opt.minimize(loss, global_step=global_step)
            else:
                gradients, variables = zip(*opt.compute_gradients(loss))
                gradients, _ = tf.clip_by_global_norm(gradients,
                                                      params['grad_clip'])
                train_op = opt.apply_gradients(
                    [(gradients[i], v) for i, v in enumerate(variables)],
                    global_step=global_step)
    elif mode == tf.estimator.ModeKeys.EVAL:
        train_op = None
    else:
        train_op = None
    if mode == tf.estimator.ModeKeys.PREDICT:
        predictions = tf.sparse_to_dense(tf.to_int32(prediction.indices),
                                         tf.to_int32(prediction.dense_shape),
                                         tf.to_int32(prediction.values),
                                         default_value=-1,
                                         name="output")
        export_outputs = {
            tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
            tf.estimator.export.PredictOutput(predictions)
        }
    else:
        predictions = None
        export_outputs = None
    return tf.estimator.EstimatorSpec(mode=mode,
                                      eval_metric_ops=metrics,
                                      predictions=predictions,
                                      loss=loss,
                                      training_hooks=training_hooks,
                                      export_outputs=export_outputs,
                                      train_op=train_op)
Exemple #11
0
    def create_training_rnn(self,
                            input_keep_prob,
                            output_keep_prob,
                            grad_clip,
                            learning_rate,
                            lr_decay_factor,
                            use_iterator=False):
        """
        Create the training RNN

        Parameters
        ----------
        :param input_keep_prob: probability of keeping input signal for a cell during training
        :param output_keep_prob: probability of keeping output signal from a cell during training
        :param grad_clip: max gradient size (prevent exploding gradients)
        :param learning_rate: learning rate parameter fed to optimizer
        :param lr_decay_factor: decay factor of the learning rate
        :param use_iterator: if True then plug an iterator.get_next() operation for the input of the model, if None
                            placeholders are created instead
        """
        if self.rnn_created:
            logging.fatal(
                "Trying to create the acoustic RNN but it is already.")

        # Store model parameters
        self.input_keep_prob = input_keep_prob
        self.output_keep_prob = output_keep_prob

        if use_iterator is True:
            mfcc_batch, input_lengths, label_batch = self.iterator_get_next_op
            # Pad if the batch is not complete
            padded_mfcc_batch = tf.pad(
                mfcc_batch, [[0, self.batch_size - tf.size(input_lengths)],
                             [0, 0], [0, 0]])
            # Transpose padded_mfcc_batch in order to get time serie as first dimension
            # [batch_size, time_serie, input_dim] ====> [time_serie, batch_size, input_dim]
            inputs = tf.transpose(padded_mfcc_batch, perm=[1, 0, 2])
            # Pad input_seq_lengths if the batch is not complete
            input_seq_lengths = tf.pad(
                input_lengths, [[0, self.batch_size - tf.size(input_lengths)]])

            # Label tensor must be provided as a sparse tensor.
            idx = tf.where(tf.not_equal(label_batch, 0))
            sparse_labels = tf.SparseTensor(idx, tf.gather_nd(
                label_batch,
                idx), [self.batch_size, self.max_target_seq_length])
            # Pad sparse_labels if the batch is not complete
            sparse_labels, _ = tf.sparse_fill_empty_rows(
                sparse_labels, self.num_labels - 1)
        else:
            # Set placeholders for input
            self.inputs_ph = tf.placeholder(
                tf.float32,
                shape=[self.max_input_seq_length, None, self.input_dim],
                name="inputs_ph")

            self.input_seq_lengths_ph = tf.placeholder(
                tf.int32, shape=[None], name="input_seq_lengths_ph")
            self.labels_ph = tf.placeholder(
                tf.int32,
                shape=[None, self.max_target_seq_length],
                name="labels_ph")
            inputs = self.inputs_ph
            input_seq_lengths = self.input_seq_lengths_ph
            label_batch = self.labels_ph

            # Label tensor must be provided as a sparse tensor.
            # First get indexes from non-zero positions
            idx = tf.where(tf.not_equal(label_batch, 0))
            # Then build a sparse tensor from indexes
            sparse_labels = tf.SparseTensor(idx, tf.gather_nd(
                label_batch,
                idx), [self.batch_size, self.max_target_seq_length])

        self.global_step, logits, prediction, self.rnn_keep_state_op, self.rnn_state_zero_op, self.input_keep_prob_ph,\
            self.output_keep_prob_ph, self.rnn_tuple_state = self._build_base_rnn(inputs, input_seq_lengths, False)

        # Add the train part to the network
        self.learning_rate_var = self._add_training_on_rnn(
            logits, grad_clip, learning_rate, lr_decay_factor, sparse_labels,
            input_seq_lengths, prediction)

        # Add the saving and restore operation
        self.saver_op = self._add_saving_op()
Exemple #12
0
    def create_training_rnn(self, input_keep_prob, output_keep_prob, grad_clip, learning_rate, lr_decay_factor,
                            use_iterator=False):
        """
        Create the training RNN

        Parameters
        ----------
        :param input_keep_prob: probability of keeping input signal for a cell during training
        :param output_keep_prob: probability of keeping output signal from a cell during training
        :param grad_clip: max gradient size (prevent exploding gradients)
        :param learning_rate: learning rate parameter fed to optimizer
        :param lr_decay_factor: decay factor of the learning rate
        :param use_iterator: if True then plug an iterator.get_next() operation for the input of the model, if None
                            placeholders are created instead
        """
        if self.rnn_created:
            logging.fatal("Trying to create the acoustic RNN but it is already.")

        # Store model parameters
        self.input_keep_prob = input_keep_prob
        self.output_keep_prob = output_keep_prob

        if use_iterator is True:
            mfcc_batch, input_lengths, label_batch = self.iterator_get_next_op
            # Pad if the batch is not complete
            padded_mfcc_batch = tf.pad(mfcc_batch, [[0, self.batch_size - tf.size(input_lengths)], [0, 0], [0, 0]])
            # Transpose padded_mfcc_batch in order to get time serie as first dimension
            # [batch_size, time_serie, input_dim] ====> [time_serie, batch_size, input_dim]
            inputs = tf.transpose(padded_mfcc_batch, perm=[1, 0, 2])
            # Pad input_seq_lengths if the batch is not complete
            input_seq_lengths = tf.pad(input_lengths, [[0, self.batch_size - tf.size(input_lengths)]])

            # Label tensor must be provided as a sparse tensor.
            idx = tf.where(tf.not_equal(label_batch, 0))
            sparse_labels = tf.SparseTensor(idx, tf.gather_nd(label_batch, idx),
                                            [self.batch_size, self.max_target_seq_length])
            # Pad sparse_labels if the batch is not complete
            sparse_labels, _ = tf.sparse_fill_empty_rows(sparse_labels, self.num_labels - 1)
        else:
            # Set placeholders for input
            self.inputs_ph = tf.placeholder(tf.float32, shape=[self.max_input_seq_length, None, self.input_dim],
                                            name="inputs_ph")

            self.input_seq_lengths_ph = tf.placeholder(tf.int32, shape=[None], name="input_seq_lengths_ph")
            self.labels_ph = tf.placeholder(tf.int32, shape=[None, self.max_target_seq_length],
                                            name="labels_ph")
            inputs = self.inputs_ph
            input_seq_lengths = self.input_seq_lengths_ph
            label_batch = self.labels_ph

            # Label tensor must be provided as a sparse tensor.
            # First get indexes from non-zero positions
            idx = tf.where(tf.not_equal(label_batch, 0))
            # Then build a sparse tensor from indexes
            sparse_labels = tf.SparseTensor(idx, tf.gather_nd(label_batch, idx),
                                            [self.batch_size, self.max_target_seq_length])

        self.global_step, logits, prediction, self.rnn_keep_state_op, self.rnn_state_zero_op, self.input_keep_prob_ph,\
            self.output_keep_prob_ph, self.rnn_tuple_state = self._build_base_rnn(inputs, input_seq_lengths, False)

        # Add the train part to the network
        self.learning_rate_var = self._add_training_on_rnn(logits, grad_clip, learning_rate, lr_decay_factor,
                                                           sparse_labels, input_seq_lengths, prediction)

        # Add the saving and restore operation
        self.saver_op = self._add_saving_op()