Exemple #1
0
def main(
    config: str = DEFAULT_YAML,
    h5: str = None,
    subwords: bool = False,
    sentence_piece: bool = False,
    output: str = None,
):
    assert h5 and output
    tf.keras.backend.clear_session()
    tf.compat.v1.enable_control_flow_v2()

    config = Config(config)
    speech_featurizer, text_featurizer = featurizer_helpers.prepare_featurizers(
        config=config,
        subwords=subwords,
        sentence_piece=sentence_piece,
    )

    contextnet = ContextNet(**config.model_config,
                            vocabulary_size=text_featurizer.num_classes)
    contextnet.make(speech_featurizer.shape)
    contextnet.load_weights(h5, by_name=True)
    contextnet.summary(line_length=100)
    contextnet.add_featurizers(speech_featurizer, text_featurizer)

    exec_helpers.convert_tflite(model=contextnet, output=output)
Exemple #2
0
def main(
    config: str = DEFAULT_YAML,
    saved: str = None,
    mxp: bool = False,
    bs: int = None,
    sentence_piece: bool = False,
    subwords: bool = False,
    device: int = 0,
    cpu: bool = False,
    output: str = "test.tsv",
):
    assert saved and output
    tf.random.set_seed(0)
    tf.keras.backend.clear_session()
    tf.config.optimizer.set_experimental_options({"auto_mixed_precision": mxp})
    env_util.setup_devices([device], cpu=cpu)

    config = Config(config)

    speech_featurizer, text_featurizer = featurizer_helpers.prepare_featurizers(
        config=config,
        subwords=subwords,
        sentence_piece=sentence_piece,
    )

    contextnet = ContextNet(**config.model_config,
                            vocabulary_size=text_featurizer.num_classes)
    contextnet.make(speech_featurizer.shape)
    contextnet.load_weights(saved, by_name=True)
    contextnet.summary(line_length=100)
    contextnet.add_featurizers(speech_featurizer, text_featurizer)

    test_dataset = dataset_helpers.prepare_testing_datasets(
        config=config,
        speech_featurizer=speech_featurizer,
        text_featurizer=text_featurizer)
    batch_size = bs or config.learning_config.running_config.batch_size
    test_data_loader = test_dataset.create(batch_size)

    exec_helpers.run_testing(model=contextnet,
                             test_dataset=test_dataset,
                             test_data_loader=test_data_loader,
                             output=output)
def test_contextnet():
    config = Config(DEFAULT_YAML)

    text_featurizer = CharFeaturizer(config.decoder_config)

    speech_featurizer = TFSpeechFeaturizer(config.speech_config)

    model = ContextNet(vocabulary_size=text_featurizer.num_classes,
                       **config.model_config)

    model.make(speech_featurizer.shape)
    model.summary(line_length=150)

    model.add_featurizers(speech_featurizer=speech_featurizer,
                          text_featurizer=text_featurizer)

    concrete_func = model.make_tflite_function(
        timestamp=False).get_concrete_function()
    converter = tf.lite.TFLiteConverter.from_concrete_functions(
        [concrete_func])
    converter.optimizations = [tf.lite.Optimize.DEFAULT]
    converter.experimental_new_converter = True
    converter.target_spec.supported_ops = [
        tf.lite.OpsSet.TFLITE_BUILTINS, tf.lite.OpsSet.SELECT_TF_OPS
    ]
    tflite = converter.convert()

    logger.info("Converted successfully with no timestamp")

    concrete_func = model.make_tflite_function(
        timestamp=True).get_concrete_function()
    converter = tf.lite.TFLiteConverter.from_concrete_functions(
        [concrete_func])
    converter.optimizations = [tf.lite.Optimize.DEFAULT]
    converter.experimental_new_converter = True
    converter.target_spec.supported_ops = [
        tf.lite.OpsSet.TFLITE_BUILTINS, tf.lite.OpsSet.SELECT_TF_OPS
    ]
    converter.convert()

    logger.info("Converted successfully with timestamp")

    tflitemodel = tf.lite.Interpreter(model_content=tflite)
    signal = tf.random.normal([4000])

    input_details = tflitemodel.get_input_details()
    output_details = tflitemodel.get_output_details()
    tflitemodel.resize_tensor_input(input_details[0]["index"], [4000])
    tflitemodel.allocate_tensors()
    tflitemodel.set_tensor(input_details[0]["index"], signal)
    tflitemodel.set_tensor(input_details[1]["index"],
                           tf.constant(text_featurizer.blank, dtype=tf.int32))
    tflitemodel.set_tensor(
        input_details[2]["index"],
        tf.zeros([
            config.model_config["prediction_num_rnns"], 2, 1,
            config.model_config["prediction_rnn_units"]
        ],
                 dtype=tf.float32))
    tflitemodel.invoke()
    hyp = tflitemodel.get_tensor(output_details[0]["index"])

    logger.info(hyp)
Exemple #4
0
train_dataset.load_metadata(args.metadata)
eval_dataset.load_metadata(args.metadata)

if not args.static_length:
    speech_featurizer.reset_length()
    text_featurizer.reset_length()

global_batch_size = args.bs or config.learning_config.running_config.batch_size
global_batch_size *= strategy.num_replicas_in_sync

train_data_loader = train_dataset.create(global_batch_size)
eval_data_loader = eval_dataset.create(global_batch_size)

with strategy.scope():
    # build model
    contextnet = ContextNet(**config.model_config,
                            vocabulary_size=text_featurizer.num_classes)
    contextnet.make(speech_featurizer.shape,
                    prediction_shape=text_featurizer.prepand_shape,
                    batch_size=global_batch_size)
    if args.pretrained:
        contextnet.load_weights(args.pretrained,
                                by_name=True,
                                skip_mismatch=True)
    contextnet.summary(line_length=100)
    optimizer = tf.keras.optimizers.Adam(
        TransformerSchedule(
            d_model=contextnet.dmodel,
            warmup_steps=config.learning_config.optimizer_config.pop(
                "warmup_steps", 10000),
            max_lr=(0.05 / math.sqrt(contextnet.dmodel))),
        **config.learning_config.optimizer_config)
Exemple #5
0
def main(
    config: str = DEFAULT_YAML,
    tfrecords: bool = False,
    sentence_piece: bool = False,
    subwords: bool = True,
    bs: int = None,
    spx: int = 1,
    metadata: str = None,
    static_length: bool = False,
    devices: list = [0],
    mxp: bool = False,
    pretrained: str = None,
):
    tf.keras.backend.clear_session()
    tf.config.optimizer.set_experimental_options({"auto_mixed_precision": mxp})
    strategy = env_util.setup_strategy(devices)

    config = Config(config)

    speech_featurizer, text_featurizer = featurizer_helpers.prepare_featurizers(
        config=config,
        subwords=subwords,
        sentence_piece=sentence_piece,
    )

    train_dataset, eval_dataset = dataset_helpers.prepare_training_datasets(
        config=config,
        speech_featurizer=speech_featurizer,
        text_featurizer=text_featurizer,
        tfrecords=tfrecords,
        metadata=metadata,
    )

    if not static_length:
        speech_featurizer.reset_length()
        text_featurizer.reset_length()

    train_data_loader, eval_data_loader, global_batch_size = dataset_helpers.prepare_training_data_loaders(
        config=config,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        strategy=strategy,
        batch_size=bs,
    )

    with strategy.scope():
        contextnet = ContextNet(**config.model_config, vocabulary_size=text_featurizer.num_classes)
        contextnet.make(speech_featurizer.shape, prediction_shape=text_featurizer.prepand_shape, batch_size=global_batch_size)
        if pretrained:
            contextnet.load_weights(pretrained, by_name=True, skip_mismatch=True)
        contextnet.summary(line_length=100)
        optimizer = tf.keras.optimizers.Adam(
            TransformerSchedule(
                d_model=contextnet.dmodel,
                warmup_steps=config.learning_config.optimizer_config.pop("warmup_steps", 10000),
                max_lr=(0.05 / math.sqrt(contextnet.dmodel)),
            ),
            **config.learning_config.optimizer_config
        )
        contextnet.compile(
            optimizer=optimizer,
            experimental_steps_per_execution=spx,
            global_batch_size=global_batch_size,
            blank=text_featurizer.blank,
        )

    callbacks = [
        tf.keras.callbacks.ModelCheckpoint(**config.learning_config.running_config.checkpoint),
        tf.keras.callbacks.experimental.BackupAndRestore(config.learning_config.running_config.states_dir),
        tf.keras.callbacks.TensorBoard(**config.learning_config.running_config.tensorboard),
    ]

    contextnet.fit(
        train_data_loader,
        epochs=config.learning_config.running_config.num_epochs,
        validation_data=eval_data_loader,
        callbacks=callbacks,
        steps_per_epoch=train_dataset.total_steps,
        validation_steps=eval_dataset.total_steps if eval_data_loader else None,
    )
Exemple #6
0
tf.random.set_seed(0)

if args.tfrecords:
    test_dataset = ASRTFRecordDataset(
        speech_featurizer=speech_featurizer,
        text_featurizer=text_featurizer,
        **vars(config.learning_config.test_dataset_config))
else:
    test_dataset = ASRSliceDataset(
        speech_featurizer=speech_featurizer,
        text_featurizer=text_featurizer,
        **vars(config.learning_config.test_dataset_config))

# build model
contextnet = ContextNet(**config.model_config,
                        vocabulary_size=text_featurizer.num_classes)
contextnet.make(speech_featurizer.shape)
contextnet.load_weights(args.saved)
contextnet.summary(line_length=100)
contextnet.add_featurizers(speech_featurizer, text_featurizer)

batch_size = args.bs or config.learning_config.running_config.batch_size
test_data_loader = test_dataset.create(batch_size)

with file_util.save_file(file_util.preprocess_paths(args.output)) as filepath:
    overwrite = True
    if tf.io.gfile.exists(filepath):
        overwrite = input(
            f"Overwrite existing result file {filepath} ? (y/n): ").lower(
            ) == "y"
    if overwrite:
Exemple #7
0
                    help="TFLite file path to be exported")

args = parser.parse_args()

assert args.saved and args.output

config = Config(args.config)
speech_featurizer = TFSpeechFeaturizer(config.speech_config)

if args.subwords:
    text_featurizer = SubwordFeaturizer(config.decoder_config)
else:
    text_featurizer = CharFeaturizer(config.decoder_config)

# build model
contextnet = ContextNet(**config.model_config,
                        vocabulary_size=text_featurizer.num_classes)
contextnet.make(speech_featurizer.shape)
contextnet.load_weights(args.saved, by_name=True)
contextnet.summary(line_length=100)
contextnet.add_featurizers(speech_featurizer, text_featurizer)

concrete_func = contextnet.make_tflite_function().get_concrete_function()
converter = tf.lite.TFLiteConverter.from_concrete_functions([concrete_func])
converter.experimental_new_converter = True
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.target_spec.supported_ops = [
    tf.lite.OpsSet.TFLITE_BUILTINS, tf.lite.OpsSet.SELECT_TF_OPS
]
tflite_model = converter.convert()

args.output = file_util.preprocess_paths(args.output)