Exemple #1
0
def create_model():
    units = 512
    middle_units = 256
    dropout_value = 0.3
    activation_function = 'softmax'
    loss_function = 'categorical_crossentropy'
    optimizer = 'rmsprop'
    model = Sequential()
    model.add(
        LSTM(units,
             input_shape=(network_input.shape[1], network_input.shape[2]),
             recurrent_dropout=dropout_value,
             return_sequences=True))
    model.add(
        LSTM(
            units,
            return_sequences=True,
            recurrent_dropout=dropout_value,
        ))
    model.add(LSTM(units))
    model.add(BatchNormalization())
    model.add(Dropout(dropout_value))
    model.add(Dense(middle_units))
    model.add(Activation('relu'))
    model.add(Dropout(dropout_value))
    model.add(BatchNormalization())
    model.add(Dropout(dropout_value))
    model.add(Dense(vocab_size))
    model.add(Activation(activation_function))
    model.compile(loss=loss_function, optimizer=optimizer)
    return model
Exemple #2
0
def create_model_pp():
    model = Sequential()
    model.add(Flatten(input_shape=(300, 300, 3)))
    model.add(Dense(4, activation="softmax"))
    model.compile(loss=categorical_crossentropy,
                  metrics=[categorical_accuracy])

    return model
Exemple #3
0
def create_model():
    model = Sequential()

    model.add(Dense(10, activation="softmax", input_dim=3072))
    model.compile(loss=sparse_categorical_crossentropy,
                  metrics=[sparse_categorical_accuracy])

    return model
Exemple #4
0
def create_model():
    model = Sequential()

    model.add(Dense(128, input_dim=3072))  # 32 * 32 * 3

    model.compile(loss=sparse_categorical_crossentropy,
                  metrics=[sparse_categorical_accuracy])

    return model
def free_attn_lstm(dataset_object: LSTM_data):
    X_train, X_test, Y_train, Y_test = dataset_object.get_memory()
    X_train, X_test = X_train[:, :, :-12], X_test[:, :, :-12]
    regressor = Sequential()
    # Adding the first LSTM layer and some Dropout regularisation
    regressor.add(LSTM(units=NEURONS,
                       return_sequences=True,
                       activation=ACTIVATION,
                       recurrent_activation="sigmoid",
                       input_shape=(X_train.shape[1], X_train.shape[2]),
                       bias_regularizer=regularizers.l2(BIAIS_REG),
                       activity_regularizer=regularizers.l2(L2)
                       ))
    regressor.add(Dropout(DROPOUT))
    regressor.add(LSTM(units=NEURONS,
                       activation=ACTIVATION,
                       recurrent_activation="sigmoid",
                       return_sequences=True,
                       bias_regularizer=regularizers.l2(BIAIS_REG),
                       activity_regularizer=regularizers.l2(L2)

                       ))
    regressor.add(Dropout(DROPOUT))
    # Adding a second LSTM layer and some Dropout regularisation
    regressor.add(LSTM(units=NEURONS,
                       activation=ACTIVATION,
                       recurrent_activation="sigmoid",
                       bias_regularizer=regularizers.l2(BIAIS_REG),
                       activity_regularizer=regularizers.l2(L2)
                  ))
    regressor.add(Dropout(DROPOUT))
    # Adding the output layer
    regressor.add(Dense(units=1,
                        activation='relu',
                        bias_regularizer=regularizers.l2(BIAIS_REG),
                       activity_regularizer=regularizers.l2(L2)
                        )
                  )
    optim = Adam()
    # Compiling the RNN
    regressor.compile(optimizer=optim, loss='mean_squared_error')

    # Fitting the RNN to the Training set
    history= regressor.fit(X_train,
                           Y_train,
                           epochs=EPOCHS,
                           batch_size=BATCH_SIZE,
                           validation_data=(X_test, Y_test),
                           callbacks=[REDUCE_LR, EARLY_STOP]
                           )
    regressor.save("data/weights/free_attn_lstm_no_senti")
    plot_train_loss(history)
    evaluate(regressor,X_test,Y_test, dataset_object,name="free_attn_lstm", senti="no")
    def Train(self, input, target):
        X_train, X_test, Y_train, Y_test = train_test_split(input, target, train_size=0.75)
        Y_train = np.asarray(Y_train)
        Y_test = np.array(Y_test)
        X_train = np.reshape(X_train, [-1, X_train[0].shape[0], X_train[0].shape[1]])
        X_test = np.reshape(X_test, [-1, X_train[0].shape[0], X_train[0].shape[1]])

        model = Sequential()
        model.add(Conv1D(16, 3, padding='same', input_shape=input[0].shape))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization())
        model.add(GRU(16, return_sequences=True))
        # model.add(Activation("sigmoid"))
        # model.add(LSTM(lstm_out))

        model.add(Flatten())
        model.add(Dense(8, activity_regularizer=l2(0.001)))
        # model.add(GRU(lstm_out, return_sequences=True))
        # model.add(LSTM(lstm_out))
        # model.add(Dense(20, activity_regularizer=l2(0.001)))
        model.add(Activation("relu"))
        model.add(Dense(2))

        model.compile(loss=mean_absolute_error, optimizer='nadam',
                      metrics=[RootMeanSquaredError(), MAE])
        print(model.summary())

        batch_size = 12
        epochs = 100
        reduce_lr_acc = ReduceLROnPlateau(monitor='val_loss', factor=0.9, patience=epochs / 10, verbose=1, min_delta=1e-4, mode='max')
        model.fit(X_train, Y_train,
                  epochs=epochs,
                  batch_size=batch_size, validation_data=(X_test, Y_test), callbacks=[reduce_lr_acc])
        model.save("PositionEstimation.h5", overwrite=True)
        # acc = model.evaluate(X_test,
        #                      Y_test,
        #                      batch_size=batch_size,
        #                      verbose=0)

        predicted = model.predict(X_test, batch_size=batch_size)
        # predicted = out.ravel()

        res = pd.DataFrame({"predicted_x": predicted[:, 0],
                            "predicted_y": predicted[:, 1],
                            "original_x": Y_test[:, 0],
                            "original_y": Y_test[:, 1]})
        res.to_excel("res.xlsx")
def dense_net(dataset_object:LSTM_data):
    X_train, X_test, Y_train, Y_test = dataset_object.get_memory()
    print(X_test.shape, X_train.shape)
    X_train = X_train.reshape(X_train.shape[0],X_train.shape[2])

    X_test=X_test.reshape(X_test.shape[0], X_test.shape[2])
    X_train, X_test = X_train[:, :-12], X_test[:, :-12]
    print(X_test.shape, X_train.shape)
    regressor = Sequential()

    regressor.add(Dense(units=EPOCHS,
                        activation='relu',
                        bias_regularizer=regularizers.l2(BIAIS_REG),
                        activity_regularizer=regularizers.l2(L2)
                        ))

    regressor.add(Dense(units=EPOCHS,
                        activation='relu',
                        bias_regularizer=regularizers.l2(BIAIS_REG),
                        activity_regularizer=regularizers.l2(L2)
                        ))
    regressor.add(Dense(units=EPOCHS,
                        activation='relu',
                        bias_regularizer=regularizers.l2(BIAIS_REG),
                        activity_regularizer=regularizers.l2(L2)
                        ))
    regressor.add(Dropout(DROPOUT))
    regressor.add(Dense(units=1,
                        activation='relu',
                        bias_regularizer=regularizers.l2(BIAIS_REG),
                        activity_regularizer=regularizers.l2(L2)
                        ))
    optim = Adam()
    # Compiling the RNN
    regressor.compile(optimizer=optim, loss='mean_squared_error')

    # Fitting the RNN to the Training set
    history= regressor.fit(X_train,
                           Y_train,
                           epochs=EPOCHS,
                           batch_size=BATCH_SIZE,
                           validation_data=(X_test, Y_test),
                           callbacks=[EARLY_STOP, REDUCE_LR])
    regressor.save("data/weights/dense_no_senti")
    plot_train_loss(history)
    evaluate(regressor, X_test,Y_test, dataset_object,name="dense", senti="yes")
    def construct_model(self,
                        tuned_params: Dict[str, Union[int, float]],
                        hps: HyperParameters = None) -> Model:
        hpf = HyperParameterFactory(self.default_parameters_values,
                                    tuned_params, hps)
        max_pool0 = hpf.get_choice(MAXPOOL0_NAME, [1, 2, 4, 8])
        max_pool1 = hpf.get_choice(MAXPOOL1_NAME, [1, 2, 4, 8])
        max_pool2 = hpf.get_choice(MAXPOOL2_NAME, [1, 2, 4, 8])
        filter_0 = hpf.get_choice(FILTER0_NAME, [4, 8, 16, 32])
        filter_1 = hpf.get_choice(FILTER1_NAME, [32, 48, 64])
        filter_2 = hpf.get_choice(FILTER2_NAME, [64, 96, 128])
        dense = hpf.get_int(DENSE_NAME, 32, 128, 8)
        lr = hpf.get_choice(LEARNING_RATE_NAME, [1e-2, 1e-3, 1e-4])

        model = Sequential([
            Input(name='MapView_Input', shape=(43, 39, 7)),
            MaxPooling2D(max_pool0, name='MapView_MaxPool_0'),
            Conv2D(filter_0,
                   2,
                   strides=1,
                   activation=tf.nn.relu,
                   name='MapView_Conv2D_1'),
            MaxPooling2D(max_pool1, name='MapView_MaxPool_1'),
            Conv2D(filter_1,
                   3,
                   strides=1,
                   activation=tf.nn.relu,
                   name='MapView_Conv2D_2'),
            MaxPooling2D(max_pool2, name='MapView_MaxPool_2'),
            Conv2D(filter_2,
                   2,
                   strides=1,
                   activation=tf.nn.relu,
                   name='MapView_Conv2D_3'),
            Flatten(name='MapView_Flatten'),
            Dropout(0.1, name='MapView_Dropout'),
            Dense(dense, activation=tf.nn.relu, name='MapView_Dense'),
            Dense(5, activation=tf.nn.softmax, name='MapView_Output'),
        ])
        loss_fn = tf.keras.losses.CategoricalCrossentropy()
        opt = tf.keras.optimizers.Adam(learning_rate=lr)
        model.compile(optimizer=opt,
                      loss=loss_fn,
                      metrics=[tf.keras.metrics.categorical_accuracy])
        return model
Exemple #9
0
    def get_model(self):
        model = Sequential()
        model.add(Conv2D(32, kernel_size=(2, 2), activation='relu',
                         input_shape=(self.feature_dim_1, self.feature_dim_2, self.channel)))
        model.add(Conv2D(64, kernel_size=(2, 2), activation='relu'))
        model.add(Conv2D(128, kernel_size=(2, 2), activation='relu'))
        model.add(MaxPool2D(pool_size=(1, 1)))
        model.add(Dropout(0.5))
        model.add(Conv2D(128, kernel_size=(2, 2), activation='relu'))
        model.add(Conv2D(256, kernel_size=(2, 2), activation='relu'))
        model.add(MaxPool2D(pool_size=(1, 1)))
        model.add(Dropout(0.5))
        model.add(Conv2D(128, kernel_size=(2, 2), activation='relu'))
        model.add(Conv2D(256, kernel_size=(4, 4), activation='relu'))
        model.add(MaxPool2D(pool_size=(2, 2)))
        model.add(Flatten())
        model.add(Dropout(0.5))
        model.add(Dense(256, kernel_regularizer=regularizers.l2(0.2), activation='relu'))
        model.add(Dense(32, kernel_regularizer=regularizers.l2(0.2), activation='relu'))
        model.add(Dense(self.num_classes, activation='softmax'))

        model.compile(loss='categorical_crossentropy', optimizer='RMSProp', metrics=['accuracy'])
        return model
    def test_seq_to_seq(self):
        #print (self.get_random_states())
        train_x = []
        # Data size: 10 x (image + 2 actions) x board/action size
        train_x = np.random.randint(0, 2, size=(10, 3, 9))

        # train_x = [
        #     [
        #     [0.1, 1.0],
        #     [0.1, 1.0],
        #     [0.1, 1.0],
        #     [0.1, 1.0],
        #     [0.1, 1.0],
        # ]]
        # 1 being the batch size
        # 10 being the length
        #train_x = np.random.randint(low=0, high=2, size=(1, 10, 9))

        train_y = [[0.11, 0.11, 0.11]] * 10

        #train_y = [ 0.11 ]
        train_y = np.array(train_y)

        model = Sequential()
        #model.add(layers.Flatten(input_shape=(3, 9))),
        #model.add(layers.Embedding(input_shape=(10, 9), ))
        model.add(
            layers.LSTM(units=100, input_shape=(3, 9), return_sequences=True))
        model.add(layers.Dropout(rate=0.25))
        model.add(layers.Dense(50, activation='relu'))
        model.add(layers.Dense(1, activation=None))
        model.compile(optimizer='adam', loss=tf.losses.MSE, metrics=['mae'])
        print(model.summary())
        model.fit(x=train_x, y=train_y, epochs=100, verbose=0)
        loss = model.evaluate(train_x, train_y, verbose=2)
        self.assertLess(loss[0], 1e-04)
Exemple #11
0
Lm1 = Sequential()
#q1. try without input?
Lm1.add(Input(shape=(784, )))
Lm1.add(Dense(num_classes, activation='softmax'))

#q2.try SparseCategoricalCrossentropy without one-hot
loss_object = tf.keras.losses.categorical_crossentropy

optimizer = tf.keras.optimizers.SGD(0.01)

#
train_loss = tf.keras.metrics.Mean(name='train_loss')
#try SparseCategoricalAccuracy
train_accuracy = tf.keras.metrics.CategoricalAccuracy(name='train_accuracy')

test_loss = tf.keras.metrics.Mean(name='test_loss')
test_accuracy = tf.keras.metrics.CategoricalAccuracy(name='test_accuracy')

checkpoint_path = "./checkpoints/"
checkpoint_dir = os.path.dirname(checkpoint_path)
cp_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path,
                                                 verbose=1,
                                                 period=1)
#q3 metrics=xxx without []?
Lm1.compile(optimizer=optimizer, loss=loss_object, metrics=[train_accuracy])
#q4 train_ds?
Lm1.fit(train_ds, epochs=3, callbacks=[cp_callback])
loss, acc = Lm1.evaluate(train_ds)
print("saved model, loss: {:5.2f}, acc: {:5.2f}".format(loss, acc))
class FecModel(Model):

    def __init__(self, loader):
        self._loader = loader

        self._num_train = 28709
        self._num_val = 7178
        self._batch_size = 64
        self._num_epoch = 1

        self.create_model()

    def create_model(self):
        self._model = Sequential()

        self._model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(48, 48, 1)))
        self._model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
        self._model.add(MaxPooling2D(pool_size=(2, 2)))
        self._model.add(Dropout(0.25))

        self._model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
        self._model.add(MaxPooling2D(pool_size=(2, 2)))
        self._model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
        self._model.add(MaxPooling2D(pool_size=(2, 2)))
        self._model.add(Dropout(0.25))

        self._model.add(Flatten())
        self._model.add(Dense(1024, activation='relu'))
        self._model.add(Dropout(0.5))
        self._model.add(Dense(7, activation='softmax'))
        self._model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=0.0001, decay=1e-6),
                            metrics=['accuracy'])

    def train_model(self):
        print('Load train data...')
        train_generator = self._loader.prepare_train_data()
        print('Load validation data...')
        validation_generator = self._loader.prepare_validation_data()
        model_info = self._model.fit_generator(
            train_generator,
            steps_per_epoch=self._num_train // self._batch_size,
            epochs=self._num_epoch,
            validation_data=validation_generator,
            validation_steps=self._num_val // self._batch_size)

    def evaluate_model(self):
        print('Load validation data...')
        evaluate_generator = self._loader.prepare_validation_data()

        model_info = self._model.evaluate(evaluate_generator,
                                          steps=self._num_train // self._batch_size,
                                          batch_size=self._batch_size,
                                          epochs=self._num_epoch)
        return model_info

    def save_model(self):
        print('Save model...')
        self._model.save_weights(FecConfig.model_file_name)

    def load_model(self):
        print('Load model...')
        self._model.load_weights(FecConfig.model_file_name)

    def make_prediction(self, input_folder):
        processed_images = self._loader.prepare_data(input_folder)
        print('Predicting data...')

        results = []
        for processed_image in processed_images:
            for face_image in processed_image.face_images:
                result = self._model.predict(face_image)
                results.append(result)

        print('Save results...')
        self._loader.save_data(processed_images, results)
Exemple #13
0
class MyAutoEncoder(object):
    # archType - 1 => 300|256|300 : archType - 2 => 300|128|300
    # archType - 3 => 300|64|300  : archType - 4 => 300|32|300
    # archType - 5 => 300|16|300  : archType - 6 => 300|128|64|128|300
    # archType - 7 => 300|256|128|128|256|300           : archType - 8 => 300|128|64|32|64|128|300
    # archType - 9 => 300||256|128|64|128|256|300       : archType - 10 => 300|128|64|32|16|32|64|128|300
    # archType - 11 => 300|256|128|64|32|64|128|256|300 : archType - 12 => 300|256|128|64|32|16|32|64|128|256|300
    def __init__(self, logFilePath, inputDim=0, archType=0):
        self.logFilePath = logFilePath
        if archType == 0: return  # We are loading a saved model

        # Create auto encoder+decoder
        self.autoEncoderModel = Sequential()
        self.autoEncoderModel.add(
            Dense(inputDim, input_shape=(inputDim, ),
                  activation='relu'))  # Input layer

        if archType == 1:
            self.autoEncoderModel.add(Dense(256, activation='relu'))
        elif archType == 2:
            self.autoEncoderModel.add(Dense(128, activation='relu'))
        elif archType == 3:
            self.autoEncoderModel.add(Dense(64, activation='relu'))
        elif archType == 4:
            self.autoEncoderModel.add(Dense(32, activation='relu'))
        elif archType == 5:
            self.autoEncoderModel.add(Dense(16, activation='relu'))
        elif archType == 6:
            self.autoEncoderModel.add(Dense(128, activation='relu'))
            self.autoEncoderModel.add(Dense(64, activation='relu'))
            self.autoEncoderModel.add(Dense(128, activation='relu'))
        elif archType == 7:
            self.autoEncoderModel.add(Dense(256, activation='relu'))
            self.autoEncoderModel.add(Dense(128, activation='relu'))
            self.autoEncoderModel.add(Dense(256, activation='relu'))
        elif archType == 8:
            self.autoEncoderModel.add(Dense(128, activation='relu'))
            self.autoEncoderModel.add(Dense(64, activation='relu'))
            self.autoEncoderModel.add(Dense(32, activation='relu'))
            self.autoEncoderModel.add(Dense(64, activation='relu'))
            self.autoEncoderModel.add(Dense(128, activation='relu'))
        elif archType == 9:
            self.autoEncoderModel.add(Dense(256, activation='relu'))
            self.autoEncoderModel.add(Dense(128, activation='relu'))
            self.autoEncoderModel.add(Dense(64, activation='relu'))
            self.autoEncoderModel.add(Dense(128, activation='relu'))
            self.autoEncoderModel.add(Dense(256, activation='relu'))
        elif archType == 10:
            self.autoEncoderModel.add(Dense(128, activation='relu'))
            self.autoEncoderModel.add(Dense(64, activation='relu'))
            self.autoEncoderModel.add(Dense(32, activation='relu'))
            self.autoEncoderModel.add(Dense(16, activation='relu'))
            self.autoEncoderModel.add(Dense(32, activation='relu'))
            self.autoEncoderModel.add(Dense(64, activation='relu'))
            self.autoEncoderModel.add(Dense(128, activation='relu'))
        elif archType == 11:
            self.autoEncoderModel.add(Dense(256, activation='relu'))
            self.autoEncoderModel.add(Dense(128, activation='relu'))
            self.autoEncoderModel.add(Dense(64, activation='relu'))
            self.autoEncoderModel.add(Dense(32, activation='relu'))
            self.autoEncoderModel.add(Dense(64, activation='relu'))
            self.autoEncoderModel.add(Dense(128, activation='relu'))
            self.autoEncoderModel.add(Dense(256, activation='relu'))
        elif archType == 12:
            self.autoEncoderModel.add(Dense(256, activation='relu'))
            self.autoEncoderModel.add(Dense(128, activation='relu'))
            self.autoEncoderModel.add(Dense(64, activation='relu'))
            self.autoEncoderModel.add(Dense(32, activation='relu'))
            self.autoEncoderModel.add(Dense(16, activation='relu'))
            self.autoEncoderModel.add(Dense(32, activation='relu'))
            self.autoEncoderModel.add(Dense(64, activation='relu'))
            self.autoEncoderModel.add(Dense(128, activation='relu'))
            self.autoEncoderModel.add(Dense(256, activation='relu'))
        else:
            raise ValueError("Incorrect architecture type given.")

        self.autoEncoderModel.add(Dense(inputDim,
                                        activation='relu'))  # Output layer
        self.autoEncoderModel.compile(optimizer='adam', loss=losses.MSE)
        self.autoEncoderModel.summary()

        # Create encoder
        inputSample = Input(shape=(inputDim, ))
        inputLayer = self.autoEncoderModel.layers[0]
        if 0 < archType < 6:
            layerTwo = self.autoEncoderModel.layers[1]
            self.encoderModel = Model(inputSample,
                                      layerTwo(inputLayer(inputSample)))
        elif archType < 8:
            layerTwo = self.autoEncoderModel.layers[1]
            layerThree = self.autoEncoderModel.layers[2]
            self.encoderModel = Model(
                inputSample, layerThree(layerTwo(inputLayer(inputSample))))
        elif archType < 10:
            layerTwo = self.autoEncoderModel.layers[1]
            layerThree = self.autoEncoderModel.layers[2]
            layerFour = self.autoEncoderModel.layers[3]
            self.encoderModel = Model(
                inputSample,
                layerFour(layerThree(layerTwo(inputLayer(inputSample)))))
        elif archType < 12:
            layerTwo = self.autoEncoderModel.layers[1]
            layerThree = self.autoEncoderModel.layers[2]
            layerFour = self.autoEncoderModel.layers[3]
            layerFive = self.autoEncoderModel.layers[4]
            self.encoderModel = Model(
                inputSample,
                layerFive(
                    layerFour(layerThree(layerTwo(inputLayer(inputSample))))))
        elif archType == 12:
            layerTwo = self.autoEncoderModel.layers[1]
            layerThree = self.autoEncoderModel.layers[2]
            layerFour = self.autoEncoderModel.layers[3]
            layerFive = self.autoEncoderModel.layers[4]
            layerSix = self.autoEncoderModel.layers[5]
            self.encoderModel = Model(
                inputSample,
                layerSix(
                    layerFive(
                        layerFour(layerThree(layerTwo(
                            inputLayer(inputSample)))))))

        self.encoderModel.summary()

    def train(self, trainX, batchSize, epochs, isDenoising=False):
        tic = time.perf_counter()
        inputLayer = trainX
        if isDenoising:  # add some noise to the input layer
            inputLayer = trainX + np.random.normal(0, 1, trainX.shape) / 2

        self.autoEncoderModel.fit(inputLayer,
                                  trainX,
                                  epochs=epochs,
                                  batch_size=batchSize,
                                  shuffle=True,
                                  validation_split=0.2)
        toc = time.perf_counter()

        with open(self.logFilePath, "a") as resultsWriter:
            resultsWriter.write(
                f"AutoEncoder training time: {toc - tic:0.4f} seconds \r")

        return toc - tic

    def encode(self, dataX, isTrainData):
        tic = time.perf_counter()
        encodedDataX = self.encoderModel.predict(dataX)
        toc = time.perf_counter()
        if isTrainData:
            with open(self.logFilePath, "a") as resultsWriter:
                resultsWriter.write(
                    f"AutoEncoder training encoding time: {toc - tic:0.4f} seconds \r"
                )
        else:
            with open(self.logFilePath, "a") as resultsWriter:
                resultsWriter.write(
                    f"AutoEncoder testing encoding time: {toc - tic:0.4f} seconds \r\r"
                )

        return encodedDataX, toc - tic
Exemple #14
0
    class CNNClassifier(ClassifierMixin, BaseMultilayerPerceptron):
        def __init__(self,
                     hidden_layer_sizes=(100, ),
                     activation="relu",
                     solver='adam',
                     alpha=0.0001,
                     batch_size='auto',
                     learning_rate="constant",
                     learning_rate_init=0.001,
                     power_t=0.5,
                     max_iter=200,
                     shuffle=True,
                     random_state=None,
                     tol=1e-4,
                     verbose=False,
                     warm_start=False,
                     momentum=0.9,
                     nesterovs_momentum=True,
                     early_stopping=False,
                     validation_fraction=0.1,
                     beta_1=0.9,
                     beta_2=0.999,
                     epsilon=1e-8,
                     n_iter_no_change=10,
                     max_fun=15000,
                     conf=None):
            super().__init__(hidden_layer_sizes=hidden_layer_sizes,
                             activation=activation,
                             solver=solver,
                             alpha=alpha,
                             batch_size=batch_size,
                             learning_rate=learning_rate,
                             learning_rate_init=learning_rate_init,
                             power_t=power_t,
                             max_iter=max_iter,
                             loss='log_loss',
                             shuffle=shuffle,
                             random_state=random_state,
                             tol=tol,
                             verbose=verbose,
                             warm_start=warm_start,
                             momentum=momentum,
                             nesterovs_momentum=nesterovs_momentum,
                             early_stopping=early_stopping,
                             validation_fraction=validation_fraction,
                             beta_1=beta_1,
                             beta_2=beta_2,
                             epsilon=epsilon,
                             n_iter_no_change=n_iter_no_change,
                             max_fun=max_fun)
            # Load model
            self.conf = conf
            self.logger = loggerElk(__name__, True)

            # Building the model
            self.classifier = Sequential()

            # Creating the method for model
            # Step 1- Convolution
            self.classifier.add(
                Convolution2D(128, (5, 5),
                              input_shape=(self.conf.nn_image_size,
                                           self.conf.nn_image_size, 1),
                              activation='relu'))
            # adding another layer
            self.classifier.add(Convolution2D(64, (4, 4), activation='relu'))
            # Pooling it
            self.classifier.add(MaxPooling2D(pool_size=(2, 2)))
            # Adding another layer
            self.classifier.add(Convolution2D(32, (3, 3), activation='relu'))
            # Pooling
            self.classifier.add(MaxPooling2D(pool_size=(2, 2)))
            # Adding another layer
            self.classifier.add(Convolution2D(32, (3, 3), activation='relu'))
            # Pooling
            self.classifier.add(MaxPooling2D(pool_size=(2, 2)))
            # Step 2- Flattening
            self.classifier.add(Flatten())
            # Step 3- Full connection
            self.classifier.add(Dense(units=128, activation='relu'))
            # For the output step
            self.classifier.add(
                Dense(units=self.conf.nn_class_size, activation='softmax'))
            self.classifier.add(Dropout(0.02))
            # Add reularizers
            # classifier.add(Dense(128,
            #                input_dim = 128,
            #                kernel_regularizer = regularizers.l1(0.001),
            #                activity_regularizer = regularizers.l1(0.001),
            #                activation = 'relu'))

            self.classifier.compile(optimizer='adam',
                                    loss='categorical_crossentropy',
                                    metrics=['accuracy'])

            # dropout = classifier.add(Dropout(0.2))

        def save_nn(self):
            try:
                dir_path = os.path.join(self.conf.working_path,
                                        self.conf.nn_model_name)
                if os.path.exists(dir_path):
                    shutil.rmtree(dir_path)
                os.makedirs(dir_path)
                save_model(self.classifier, filepath=dir_path, overwrite=True)
            except Exception as exc:
                self.logger.Error(exc)

        def load_nn(self):
            try:
                dir_path = os.path.join(self.conf.working_path,
                                        self.conf.nn_model_name)
                self.classifier = load_model(filepath=dir_path)
            except Exception as exc:
                self.logger.Error(exc)

        def fit(self, training_set, validation_set):
            """
            Fit the model to data matrix X and target(s) y.

            """
            check_pointer = callbacks.ModelCheckpoint(
                filepath=self.conf.working_path,
                monitor='val_acc',
                verbose=1,
                save_best_only=True,
                save_weights_only=False,
                mode='auto',
                period=1)
            history = self.classifier.fit_generator(
                training_set,
                steps_per_epoch=(training_set.n / 32),
                epochs=self.conf.nn_epochs,
                validation_data=validation_set,
                validation_steps=(validation_set.n / 32),
                callbacks=[check_pointer])

        @property
        def partial_fit(self):
            """Update the model with a single iteration over the given data.

            classes : array, shape (n_classes), default None
                Classes across all calls to partial_fit.
                Can be obtained via `np.unique(y_all)`, where y_all is the
                target vector of the entire dataset.
                This argument is required for the first call to partial_fit
                and can be omitted in the subsequent calls.
                Note that y doesn't need to contain all labels in `classes`.

            Returns
            -------
            self : returns a trained MLP model.
            """
            # if self.solver not in _STOCHASTIC_SOLVERS:
            #     raise AttributeError("partial_fit is only available for stochastic"
            #                          " optimizer. %s is not stochastic"
            #                          % self.solver)
            # return self._partial_fit
            return

        def _partial_fit(self, X, y, classes=None):
            # if _check_partial_fit_first_call(self, classes):
            #     self._label_binarizer = LabelBinarizer()
            #     if type_of_target(y).startswith('multilabel'):
            #         self._label_binarizer.fit(y)
            #     else:
            #         self._label_binarizer.fit(classes)
            #
            # super()._partial_fit(X, y)
            #
            # return self
            pass

        def _validate_input(self, X, y, incremental):
            X, y = check_X_y(X,
                             y,
                             accept_sparse=['csr', 'csc', 'coo'],
                             multi_output=True)
            if y.ndim == 2 and y.shape[1] == 1:
                y = column_or_1d(y, warn=True)

            if not incremental:
                self._label_binarizer = LabelBinarizer()
                self._label_binarizer.fit(y)
                self.classes_ = self._label_binarizer.classes_
            elif self.warm_start:
                classes = unique_labels(y)
                if set(classes) != set(self.classes_):
                    raise ValueError(
                        "warm_start can only be used where `y` has "
                        "the same classes as in the previous "
                        "call to fit. Previously got %s, `y` has %s" %
                        (self.classes_, classes))
            else:
                classes = unique_labels(y)
                if len(np.setdiff1d(classes, self.classes_,
                                    assume_unique=True)):
                    raise ValueError("`y` has classes not in `self.classes_`."
                                     " `self.classes_` has %s. 'y' has %s." %
                                     (self.classes_, classes))

            y = self._label_binarizer.transform(y)
            return X, y

        def predict(self, X):
            """Predict using the multi-layer perceptron classifier

            Parameters
            ----------
            X : {array-like, sparse matrix}, shape (n_samples, n_features)
                The input data.

            Returns
            -------
            y : array-like, shape (n_samples,) or (n_samples, n_classes)
                The predicted classes.
            """
            # check_is_fitted(self)
            # y_pred = self._predict(X)
            #
            # if self.n_outputs_ == 1:
            #     y_pred = y_pred.ravel()
            #
            # return self._label_binarizer.inverse_transform(y_pred)

            y_pred = self.classifier.predict(X)
            return y_pred

        def predict_log_proba(self, X):
            """Return the log of probability estimates.

            Parameters
            ----------
            X : array-like, shape (n_samples, n_features)
                The input data.

            Returns
            -------
            log_y_prob : array-like, shape (n_samples, n_classes)
                The predicted log-probability of the sample for each class
                in the model, where classes are ordered as they are in
                `self.classes_`. Equivalent to log(predict_proba(X))
            """
            # y_prob = self.predict_proba(X)
            # return np.log(y_prob, out=y_prob)
            pass

        def predict_proba(self, X):
            """Probability estimates.

            Parameters
            ----------
            X : {array-like, sparse matrix}, shape (n_samples, n_features)
                The input data.

            Returns
            -------
            y_prob : array-like, shape (n_samples, n_classes)
                The predicted probability of the sample for each class in the
                model, where classes are ordered as they are in `self.classes_`.
            """
            check_is_fitted(self)
            y_pred = self.classifier.predict_proba(X)

            if self.n_outputs_ == 1:
                y_pred = y_pred.ravel()

            if y_pred.ndim == 1:
                return np.vstack([1 - y_pred, y_pred]).T
            else:
                return y_pred
Exemple #15
0
model.add(Conv2D(32, 3, padding='same', activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(64, 3, padding='same', activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())
model.add(Dropout(0.2))
model.add(Dense(512, activation='relu'))

model.add(Dropout(0.2))
model.add(Dense(5, activation='softmax'))

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

print("Training model...")
history = model.fit_generator(
    train_data_gen,
    steps_per_epoch=int(np.ceil(train_data_gen.n / float(batch_size))),
    epochs=EPOCHS,
    validation_data=val_data_gen,
    validation_steps=int(np.ceil(val_data_gen.n / float(batch_size))))

print("Training complete")

acc = history.history['accuracy']  # tensorflow 1.0 = 'acc', 2.0 = 'accuracy'
val_acc = history.history['val_accuracy']
loss = history.history['loss']