Exemple #1
0
    def test_train_one_head(self):
        head1 = multi_label_head.MultiLabelHead(n_classes=2, name='head1')
        multi_head = multi_head_lib.MultiHead([head1])

        logits = {
            'head1': np.array([[-10., 10.], [-15., 10.]], dtype=np.float32)
        }
        expected_probabilities = {
            'head1': nn.sigmoid(logits['head1']),
        }
        labels = {'head1': np.array([[1, 0], [1, 1]], dtype=np.int64)}
        features = {'x': np.array(((42, ), ), dtype=np.int32)}
        # For large logits, sigmoid cross entropy loss is approximated as:
        # loss = labels * (logits < 0) * (-logits) +
        #        (1 - labels) * (logits > 0) * logits =>
        # expected_unweighted_loss = [[10., 10.], [15., 0.]]
        # loss = ((10 + 10) / 2 + (15 + 0) / 2) / 2 = 8.75
        expected_loss = 8.75
        tol = 1e-3
        loss = multi_head.loss(logits=logits,
                               labels=labels,
                               features=features,
                               mode=model_fn.ModeKeys.TRAIN)
        self.assertAllClose(expected_loss,
                            self.evaluate(loss),
                            rtol=tol,
                            atol=tol)
        if context.executing_eagerly():
            return

        expected_train_result = 'my_train_op'

        def _train_op_fn(loss):
            return string_ops.string_join([
                constant_op.constant(expected_train_result),
                string_ops.as_string(loss, precision=3)
            ])

        spec = multi_head.create_estimator_spec(features=features,
                                                mode=model_fn.ModeKeys.TRAIN,
                                                logits=logits,
                                                labels=labels,
                                                train_op_fn=_train_op_fn)
        self.assertIsNotNone(spec.loss)
        self.assertEqual({}, spec.eval_metric_ops)
        self.assertIsNotNone(spec.train_op)
        self.assertIsNone(spec.export_outputs)
        test_lib._assert_no_hooks(self, spec)
        # Assert predictions, loss, train_op, and summaries.
        with self.cached_session() as sess:
            test_lib._initialize_variables(self, spec.scaffold)
            self.assertIsNotNone(spec.scaffold.summary_op)
            loss, train_result, summary_str, predictions = sess.run(
                (spec.loss, spec.train_op, spec.scaffold.summary_op,
                 spec.predictions))
            self.assertAllClose(
                logits['head1'],
                predictions[('head1', prediction_keys.PredictionKeys.LOGITS)])
            self.assertAllClose(
                expected_probabilities['head1'],
                predictions[('head1',
                             prediction_keys.PredictionKeys.PROBABILITIES)])
            self.assertAllClose(expected_loss, loss, rtol=tol, atol=tol)
            self.assertEqual(
                six.b('{0:s}{1:.3f}'.format(expected_train_result,
                                            expected_loss)), train_result)
            test_lib._assert_simple_summaries(
                self, {
                    metric_keys.MetricKeys.LOSS: expected_loss,
                    metric_keys.MetricKeys.LOSS + '/head1': expected_loss,
                }, summary_str, tol)
Exemple #2
0
    def test_train_with_regularization_losses(self):
        head1 = multi_label_head.MultiLabelHead(n_classes=2, name='head1')
        head2 = multi_label_head.MultiLabelHead(n_classes=3, name='head2')
        multi_head = multi_head_lib.MultiHead([head1, head2],
                                              head_weights=[1., 2.])

        logits = {
            'head1':
            np.array([[-10., 10.], [-15., 10.]], dtype=np.float32),
            'head2':
            np.array([[20., -20., 20.], [-30., 20., -20.]], dtype=np.float32),
        }
        expected_probabilities = {
            'head1': nn.sigmoid(logits['head1']),
            'head2': nn.sigmoid(logits['head2']),
        }
        labels = {
            'head1': np.array([[1, 0], [1, 1]], dtype=np.int64),
            'head2': np.array([[0, 1, 0], [1, 1, 0]], dtype=np.int64),
        }
        features = {'x': np.array(((42, ), ), dtype=np.int32)}
        regularization_losses = [1.5, 0.5]

        # For large logits, sigmoid cross entropy loss is approximated as:
        # loss = labels * (logits < 0) * (-logits) +
        #        (1 - labels) * (logits > 0) * logits =>
        # head1: expected_unweighted_loss = [[10., 10.], [15., 0.]]
        # loss1 = ((10 + 10) / 2 + (15 + 0) / 2) / 2 = 8.75
        # head2: expected_unweighted_loss = [[20., 20., 20.], [30., 0., 0]]
        # loss2 = ((20 + 20 + 20) / 3 + (30 + 0 + 0) / 3) / 2 = 15
        # Average over classes, weighted sum over batch and heads.
        # weights = [1., 2.]
        # merged_training_loss = 1. * loss1 + 2. * loss2
        # training_loss = merged_training_loss + regularization_loss
        #               = 1. * loss1 + 2. * loss2 + sum([1.5, 0.5])
        expected_loss_head1 = 8.75
        expected_loss_head2 = 15.0
        expected_regularization_loss = 2.
        # training loss.
        expected_loss = (1. * expected_loss_head1 + 2. * expected_loss_head2 +
                         expected_regularization_loss)
        tol = 1e-3
        loss = multi_head.loss(logits=logits,
                               labels=labels,
                               features=features,
                               mode=model_fn.ModeKeys.TRAIN,
                               regularization_losses=regularization_losses)
        self.assertAllClose(expected_loss,
                            self.evaluate(loss),
                            rtol=tol,
                            atol=tol)
        if context.executing_eagerly():
            return

        keys = metric_keys.MetricKeys
        expected_train_result = 'my_train_op'

        def _train_op_fn(loss):
            return string_ops.string_join([
                constant_op.constant(expected_train_result),
                string_ops.as_string(loss, precision=3)
            ])

        spec = multi_head.create_estimator_spec(
            features=features,
            mode=model_fn.ModeKeys.TRAIN,
            logits=logits,
            labels=labels,
            train_op_fn=_train_op_fn,
            regularization_losses=regularization_losses)
        self.assertIsNotNone(spec.loss)
        self.assertEqual({}, spec.eval_metric_ops)
        self.assertIsNotNone(spec.train_op)
        self.assertIsNone(spec.export_outputs)
        test_lib._assert_no_hooks(self, spec)
        # Assert predictions, loss, train_op, and summaries.
        with self.cached_session() as sess:
            test_lib._initialize_variables(self, spec.scaffold)
            self.assertIsNotNone(spec.scaffold.summary_op)
            loss, train_result, summary_str, predictions = sess.run(
                (spec.loss, spec.train_op, spec.scaffold.summary_op,
                 spec.predictions))
            self.assertAllClose(
                logits['head1'],
                predictions[('head1', prediction_keys.PredictionKeys.LOGITS)])
            self.assertAllClose(
                expected_probabilities['head1'],
                predictions[('head1',
                             prediction_keys.PredictionKeys.PROBABILITIES)])
            self.assertAllClose(
                logits['head2'],
                predictions[('head2', prediction_keys.PredictionKeys.LOGITS)])
            self.assertAllClose(
                expected_probabilities['head2'],
                predictions[('head2',
                             prediction_keys.PredictionKeys.PROBABILITIES)])
            self.assertAllClose(expected_loss, loss, rtol=tol, atol=tol)
            self.assertEqual(
                six.b('{0:s}{1:.3f}'.format(expected_train_result,
                                            expected_loss)), train_result)
            test_lib._assert_simple_summaries(
                self, {
                    keys.LOSS_REGULARIZATION: expected_regularization_loss,
                    keys.LOSS: expected_loss,
                    keys.LOSS + '/head1': expected_loss_head1,
                    keys.LOSS + '/head2': expected_loss_head2,
                }, summary_str, tol)
Exemple #3
0
    def test_eval_two_heads_with_weights(self):
        head1 = multi_label_head.MultiLabelHead(n_classes=2, name='head1')
        head2 = multi_label_head.MultiLabelHead(n_classes=3, name='head2')
        multi_head = multi_head_lib.MultiHead([head1, head2],
                                              head_weights=[1., 2.])

        logits = {
            'head1':
            np.array([[-10., 10.], [-15., 10.]], dtype=np.float32),
            'head2':
            np.array([[20., -20., 20.], [-30., 20., -20.]], dtype=np.float32),
        }
        labels = {
            'head1': np.array([[1, 0], [1, 1]], dtype=np.int64),
            'head2': np.array([[0, 1, 0], [1, 1, 0]], dtype=np.int64),
        }
        features = {'x': np.array(((42, ), ), dtype=np.int32)}
        # For large logits, sigmoid cross entropy loss is approximated as:
        # loss = labels * (logits < 0) * (-logits) +
        #        (1 - labels) * (logits > 0) * logits =>
        # head1: expected_unweighted_loss = [[10., 10.], [15., 0.]]
        # loss = ((10 + 10) / 2 + (15 + 0) / 2) / 2 = 8.75
        # head2: expected_unweighted_loss = [[20., 20., 20.], [30., 0., 0]]
        # loss = ((20 + 20 + 20) / 3 + (30 + 0 + 0) / 3) / 2 = 15
        expected_loss_head1 = 8.75
        expected_loss_head2 = 15.
        expected_loss = 1. * expected_loss_head1 + 2. * expected_loss_head2
        tol = 1e-3
        keys = metric_keys.MetricKeys
        expected_metrics = {
            keys.LOSS + '/head1': expected_loss_head1,
            keys.LOSS + '/head2': expected_loss_head2,
            # Average loss over examples.
            keys.LOSS_MEAN + '/head1': expected_loss_head1,
            keys.LOSS_MEAN + '/head2': expected_loss_head2,
            # auc and auc_pr cannot be reliably calculated for only 4-6 samples, but
            # this assert tests that the algorithm remains consistent.
            # TODO(yhliang): update metrics
            # keys.AUC + '/head1': 0.1667,
            # keys.AUC + '/head2': 0.3333,
            # keys.AUC_PR + '/head1': 0.6667,
            # keys.AUC_PR + '/head2': 0.5000,
        }

        if context.executing_eagerly():
            loss = multi_head.loss(logits,
                                   labels,
                                   features=features,
                                   mode=model_fn.ModeKeys.EVAL)
            self.assertIsNotNone(loss)
            self.assertAllClose(expected_loss, loss, rtol=tol, atol=tol)

            eval_metrics = multi_head.metrics()
            updated_metrics = multi_head.update_metrics(
                eval_metrics, features, logits, labels)
            self.assertItemsEqual(expected_metrics.keys(),
                                  updated_metrics.keys())
            self.assertAllClose(
                expected_metrics,
                {k: updated_metrics[k].result()
                 for k in updated_metrics},
                rtol=tol,
                atol=tol)
            return

        spec = multi_head.create_estimator_spec(features=features,
                                                mode=model_fn.ModeKeys.EVAL,
                                                logits=logits,
                                                labels=labels)
        # Assert spec contains expected tensors.
        self.assertIsNotNone(spec.loss)
        self.assertItemsEqual(expected_metrics.keys(),
                              spec.eval_metric_ops.keys())
        self.assertIsNone(spec.train_op)
        self.assertIsNone(spec.export_outputs)
        test_lib._assert_no_hooks(self, spec)
        # Assert predictions, loss, and metrics.
        with self.cached_session() as sess:
            test_lib._initialize_variables(self, spec.scaffold)
            self.assertIsNone(spec.scaffold.summary_op)
            value_ops = {
                k: spec.eval_metric_ops[k][0]
                for k in spec.eval_metric_ops
            }
            update_ops = {
                k: spec.eval_metric_ops[k][1]
                for k in spec.eval_metric_ops
            }
            loss, _ = sess.run((spec.loss, update_ops))
            self.assertAllClose(expected_loss, loss, rtol=tol, atol=tol)
            # Check results of value ops (in `metrics`).
            self.assertAllClose(expected_metrics,
                                {k: value_ops[k].eval()
                                 for k in value_ops},
                                rtol=tol,
                                atol=tol)