Exemple #1
0
    def test_concatenate_inputs_and_outputs_no_arg_graphs(self):
        graph1 = tf.Graph()
        with graph1.as_default():
            out1 = tf.constant(1.0)
            init_op_name_1 = tf.compat.v1.global_variables_initializer().name
        graph2 = tf.Graph()
        with graph2.as_default():
            out2 = tf.constant(2.0)
            init_op_name_2 = tf.compat.v1.global_variables_initializer().name

        graph_spec_1 = graph_spec.GraphSpec(graph1.as_graph_def(),
                                            init_op_name_1, [], [out1.name])
        graph_spec_2 = graph_spec.GraphSpec(graph2.as_graph_def(),
                                            init_op_name_2, [], [out2.name])
        arg_list = [graph_spec_1, graph_spec_2]
        merged_graph, init_op_name, _, out_name_maps = graph_merge.concatenate_inputs_and_outputs(
            arg_list)

        with merged_graph.as_default():
            with tf.compat.v1.Session() as sess:
                sess.run(init_op_name)
                outputs = sess.run(
                    [out_name_maps[0][out1.name], out_name_maps[1][out2.name]])

        self.assertAllClose(outputs, np.array([1., 2.]))
Exemple #2
0
    def test_concatenate_inputs_and_outputs_two_add_one_graphs(self):
        graph1, input_name_1, output_name_1 = _make_add_one_graph()
        graph2, input_name_2, output_name_2 = _make_add_one_graph()
        with graph1.as_default():
            init_op_name_1 = tf.compat.v1.global_variables_initializer().name
        with graph2.as_default():
            init_op_name_2 = tf.compat.v1.global_variables_initializer().name
        graph_spec_1 = graph_spec.GraphSpec(graph1.as_graph_def(),
                                            init_op_name_1, [input_name_1],
                                            [output_name_1])
        graph_spec_2 = graph_spec.GraphSpec(graph2.as_graph_def(),
                                            init_op_name_2, [input_name_2],
                                            [output_name_2])
        arg_list = [graph_spec_1, graph_spec_2]
        merged_graph, init_op_name, in_name_maps, out_name_maps = graph_merge.concatenate_inputs_and_outputs(
            arg_list)

        with merged_graph.as_default():
            with tf.compat.v1.Session() as sess:
                sess.run(init_op_name)
                outputs = sess.run(
                    [
                        out_name_maps[0][output_name_1],
                        out_name_maps[1][output_name_2]
                    ],
                    feed_dict={
                        in_name_maps[0][input_name_1]: 1.0,
                        in_name_maps[1][input_name_2]: 2.0
                    })

        self.assertAllClose(outputs, np.array([2., 3.]))
Exemple #3
0
    def test_concatenate_inputs_and_outputs_with_dataset_wires_correctly(self):
        dataset_graph, _, dataset_out_name = _make_dataset_constructing_graph()
        graph_1, _, out_name_1 = _make_manual_reduce_graph(
            dataset_graph, dataset_out_name)
        graph_2, _, out_name_2 = _make_manual_reduce_graph(
            dataset_graph, dataset_out_name)
        with graph_1.as_default():
            init_op_name_1 = tf.compat.v1.global_variables_initializer().name
        with graph_2.as_default():
            init_op_name_2 = tf.compat.v1.global_variables_initializer().name
        graph_spec_1 = graph_spec.GraphSpec(graph_1.as_graph_def(),
                                            init_op_name_1, [], [out_name_1])
        graph_spec_2 = graph_spec.GraphSpec(graph_2.as_graph_def(),
                                            init_op_name_2, [], [out_name_2])
        arg_list = [graph_spec_1, graph_spec_2]
        merged_graph, init_op_name, _, out_name_maps = graph_merge.concatenate_inputs_and_outputs(
            arg_list)

        with merged_graph.as_default():
            with tf.compat.v1.Session() as sess:
                sess.run(init_op_name)
                tens = sess.run([
                    out_name_maps[0][out_name_1], out_name_maps[1][out_name_2]
                ])
        self.assertEqual(tens, [10, 10])
Exemple #4
0
    def test_compose_three_add_one_graphs_adds_three(self):
        graph1, input_name_1, output_name_1 = _make_add_one_graph()
        graph2, input_name_2, output_name_2 = _make_add_one_graph()
        graph3, input_name_3, output_name_3 = _make_add_one_graph()
        with graph1.as_default():
            init_op_name_1 = tf.compat.v1.global_variables_initializer().name
        with graph2.as_default():
            init_op_name_2 = tf.compat.v1.global_variables_initializer().name
        with graph3.as_default():
            init_op_name_3 = tf.compat.v1.global_variables_initializer().name
        graph_spec_1 = graph_spec.GraphSpec(graph1.as_graph_def(),
                                            init_op_name_1, [input_name_1],
                                            [output_name_1])
        graph_spec_2 = graph_spec.GraphSpec(graph2.as_graph_def(),
                                            init_op_name_2, [input_name_2],
                                            [output_name_2])
        graph_spec_3 = graph_spec.GraphSpec(graph3.as_graph_def(),
                                            init_op_name_3, [input_name_3],
                                            [output_name_3])
        arg_list = [graph_spec_1, graph_spec_2, graph_spec_3]
        composed_graph, init_op_name, in_name_map, out_name_map = graph_merge.compose_graph_specs(
            arg_list)

        with composed_graph.as_default():
            with tf.compat.v1.Session() as sess:
                sess.run(init_op_name)
                outputs = sess.run(out_name_map[output_name_3],
                                   feed_dict={
                                       in_name_map[input_name_1]: 0.0,
                                   })

        self.assertAllClose(outputs, np.array(3.))
def optimize_graph_spec(graph_spec_obj, config_proto):
    """Applies Grappler with given options to a `graph_spec.GraphSpec`.

  For more information on Grappler, see
  https://www.tensorflow.org/guide/graph_optimization

  Args:
    graph_spec_obj: Instance of `graph_spec.GraphSpec` representing the
      TensorFlow computation to optimize.
    config_proto: Instance of `tf.compat.v1.ConfigProto` specifying optimization
      options for Grappler.

  Returns:
    An instance of `graph_spec_obj` which has been passed through Grappler and
    optimized if possible.
  """
    meta_graph_def = graph_spec_obj.to_meta_graph_def()

    try:
        # Grappler raises if it fails to find feeds and fetches, but can handle
        # *some* no-arg graphs, so we try/except here.
        optimized_graph_def = tf_optimizer.OptimizeGraph(
            config_proto, meta_graph_def)
    except ValueError as error:
        logging.info(
            'Grappler has raised the error %s; falling back to using '
            'non-optimized graph.', error)
        optimized_graph_def = graph_spec_obj.graph_def

    return graph_spec.GraphSpec(optimized_graph_def,
                                init_op=graph_spec_obj.init_op,
                                in_names=graph_spec_obj.in_names,
                                out_names=graph_spec_obj.out_names)
Exemple #6
0
    def test_semantic_equivalence_for_simple_graphdef(self):
        graph, in_name, out_name = _make_redundant_add_one_graph()
        graph_def = graph.as_graph_def()
        init_op = None
        in_names = [in_name]
        out_names = [out_name]
        gs = graph_spec.GraphSpec(graph_def, init_op, in_names, out_names)
        config_proto = tf.compat.v1.ConfigProto()
        opt_graph_spec = graph_optimizations.optimize_graph_spec(
            gs, config_proto)

        with tf.Graph().as_default() as orig_graph:
            tf.graph_util.import_graph_def(gs.graph_def, name='')

        with tf.compat.v1.Session(graph=orig_graph) as sess:
            orig_out = sess.run(gs.out_names,
                                feed_dict={x: 1
                                           for x in gs.in_names})

        with tf.Graph().as_default() as new_graph:
            tf.graph_util.import_graph_def(opt_graph_spec.graph_def, name='')

        with tf.compat.v1.Session(graph=new_graph) as sess:
            new_out = sess.run(
                opt_graph_spec.out_names,
                feed_dict={x: 1
                           for x in opt_graph_spec.in_names})

        self.assertEqual(new_out, orig_out)
Exemple #7
0
    def test_reduces_graph_size_in_function_lib(self):
        class StateHolder:
            pass

        obj = StateHolder()
        obj.variable = None

        @tf.function
        def foo(x):
            if obj.variable is None:
                obj.variable = tf.Variable(initial_value=0.)
                obj.variable.assign_add(x)
            return obj.variable.read_value()

        with tf.Graph().as_default() as g:
            x = tf.compat.v1.placeholder(shape=[], dtype=tf.float32)
            y = foo(x)
            init_op = tf.compat.v1.global_variables_initializer()

        graph_def = g.as_graph_def()
        in_name = x.name
        out_name = y.name
        init_op_name = init_op.name

        in_names = [in_name]
        out_names = [out_name]
        gs = graph_spec.GraphSpec(graph_def, init_op_name, in_names, out_names)
        config_proto = tf.compat.v1.ConfigProto()
        opt_graph_spec = graph_optimizations.optimize_graph_spec(
            gs, config_proto)

        self.assertIsInstance(opt_graph_spec, graph_spec.GraphSpec)
        self.assertLess(opt_graph_spec.graph_def.ByteSize(),
                        graph_def.ByteSize())
Exemple #8
0
    def test_semantic_equivalence_for_graphdef_with_variables(self):
        graph, in_name, out_name = _make_foldable_add_variable_number_graph()
        with graph.as_default():
            init_op = tf.compat.v1.global_variables_initializer().name
        graph_def = graph.as_graph_def()
        in_names = [in_name]
        out_names = [out_name]
        gs = graph_spec.GraphSpec(graph_def, init_op, in_names, out_names)
        config_proto = tf.compat.v1.ConfigProto()
        opt_graph_spec = graph_optimizations.optimize_graph_spec(
            gs, config_proto)

        with tf.Graph().as_default() as orig_graph:
            tf.graph_util.import_graph_def(gs.graph_def, name='')

        with tf.compat.v1.Session(graph=orig_graph) as sess:
            sess.run(gs.init_op)
            orig_out = sess.run(gs.out_names,
                                feed_dict={x: 1
                                           for x in gs.in_names})

        with tf.Graph().as_default() as new_graph:
            tf.graph_util.import_graph_def(opt_graph_spec.graph_def, name='')

        with tf.compat.v1.Session(graph=new_graph) as new_sess:
            new_sess.run(opt_graph_spec.init_op)
            new_out = new_sess.run(
                opt_graph_spec.out_names,
                feed_dict={x: 1
                           for x in opt_graph_spec.in_names})

        self.assertEqual(new_out, orig_out)
Exemple #9
0
    def test_reduces_bytesize_for_foldable_graphdef_with_variables(self):
        graph, in_name, out_name = _make_foldable_add_variable_number_graph()
        with graph.as_default():
            init_op = tf.compat.v1.global_variables_initializer().name
        graph_def = graph.as_graph_def()

        orig_constants_1 = []
        for node in graph_def.node:
            if node.op == 'Const':
                for float_val in node.attr['value'].tensor.float_val:
                    if float_val == 1.:
                        orig_constants_1.append(node)

        in_names = [in_name]
        out_names = [out_name]
        gs = graph_spec.GraphSpec(graph_def, init_op, in_names, out_names)
        config_proto = tf.compat.v1.ConfigProto()
        opt_graph_spec = graph_optimizations.optimize_graph_spec(
            gs, config_proto)

        opt_constants_1 = []
        for node in opt_graph_spec.graph_def.node:
            if node.op == 'Const':
                for float_val in node.attr['value'].tensor.float_val:
                    if float_val == 1.:
                        opt_constants_1.append(node)

        self.assertIsInstance(opt_graph_spec, graph_spec.GraphSpec)
        self.assertLess(opt_graph_spec.graph_def.ByteSize(),
                        graph_def.ByteSize())
        self.assertGreater(len(orig_constants_1), 1)
        self.assertLess(len(opt_constants_1), len(orig_constants_1))
  def test_meta_graph_def_restores_and_runs_with_variables(self):
    graph, in_name, out_name = _make_add_variable_number_graph()

    with graph.as_default():
      init_op = tf.compat.v1.global_variables_initializer().name

    graph_def = graph.as_graph_def()
    in_names = [in_name]
    out_names = [out_name]
    gs = graph_spec.GraphSpec(graph_def, init_op, in_names, out_names)
    metagraphdef = gs.to_meta_graph_def()

    with tf.Graph().as_default() as g:
      tf.compat.v1.train.import_meta_graph(metagraphdef)
      restored_init_op = tf.group(
          *tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.INIT_OP)).name

    with tf.compat.v1.Session(graph=g) as sess:
      sess.run(restored_init_op)
      should_be_one = sess.run(out_name, feed_dict={in_name: 0})
      should_be_two = sess.run(out_name, feed_dict={in_name: 0})
      should_be_three = sess.run(out_name, feed_dict={in_name: 0})

    self.assertEqual(should_be_one, 1.)
    self.assertEqual(should_be_two, 2.)
    self.assertEqual(should_be_three, 3.)
Exemple #11
0
def _unpack_proto_into_graph_spec(tf_block_proto):
  """Packs a TF proto into a `graph_spec.GraphSpec`.

  Args:
    tf_block_proto: Instance of `computation_pb2.Computation` with `tensorflow`
      `computation` attribute.

  Returns:
    Instance of `graph_spec.GraphSpec` containing Python representations of
    the information present in `tf_block_proto`.
  """
  graph = serialization_utils.unpack_graph_def(
      tf_block_proto.tensorflow.graph_def)
  graph_init_op_name = tf_block_proto.tensorflow.initialize_op
  if not graph_init_op_name:
    graph_init_op_name = None
  graph_parameter_binding = tf_block_proto.tensorflow.parameter
  graph_result_binding = tf_block_proto.tensorflow.result

  if graph_parameter_binding.WhichOneof('binding') is not None:
    graph_parameter_list = tensorflow_utils.extract_tensor_names_from_binding(
        graph_parameter_binding)
  else:
    graph_parameter_list = []
  graph_result_list = tensorflow_utils.extract_tensor_names_from_binding(
      graph_result_binding)
  return graph_spec.GraphSpec(graph, graph_init_op_name, graph_parameter_list,
                              graph_result_list)
Exemple #12
0
    def test_compose_no_input_graphs_raises(self):
        graph1 = tf.Graph()
        with graph1.as_default():
            out1 = tf.constant(1.0)
            init_op_name_1 = tf.compat.v1.global_variables_initializer().name
        graph2 = tf.Graph()
        with graph2.as_default():
            out2 = tf.constant(2.0)
            init_op_name_2 = tf.compat.v1.global_variables_initializer().name

        graph_spec_1 = graph_spec.GraphSpec(graph1.as_graph_def(),
                                            init_op_name_1, [], [out1.name])
        graph_spec_2 = graph_spec.GraphSpec(graph2.as_graph_def(),
                                            init_op_name_2, [], [out2.name])
        arg_list = [graph_spec_1, graph_spec_2]
        with self.assertRaisesRegex(ValueError, 'mismatch'):
            graph_merge.compose_graph_specs(arg_list)
 def test_graph_spec_to_meta_graph_def_simplest_case(self):
   graph, in_name, out_name = _make_add_one_graph()
   graph_def = graph.as_graph_def()
   init_op = None
   in_names = [in_name]
   out_names = [out_name]
   gs = graph_spec.GraphSpec(graph_def, init_op, in_names, out_names)
   metagraphdef = gs.to_meta_graph_def()
   self.assertIsInstance(metagraphdef, tf.compat.v1.MetaGraphDef)
Exemple #14
0
def optimize_graph_spec(graph_spec_obj):
    meta_graph_def = graph_spec_obj.to_meta_graph_def()
    config_proto = tf.compat.v1.ConfigProto()
    # TODO(b/154367032): Determine a set of optimizer configurations for TFF.
    optimized_graph_def = tf_optimizer.OptimizeGraph(config_proto,
                                                     meta_graph_def)
    return graph_spec.GraphSpec(optimized_graph_def,
                                init_op=graph_spec_obj.init_op,
                                in_names=graph_spec_obj.in_names,
                                out_names=graph_spec_obj.out_names)
 def test_graph_spec_constructs_whimsy_data(self):
   graph_def = _make_add_one_graph()[0].as_graph_def()
   init_op = 'init'
   in_names = ['in']
   out_names = ['out']
   x = graph_spec.GraphSpec(graph_def, init_op, in_names, out_names)
   self.assertIs(x.graph_def, graph_def)
   self.assertIs(x.init_op, init_op)
   self.assertIs(x.in_names, in_names)
   self.assertIs(x.out_names, out_names)
Exemple #16
0
 def test_reduces_bytesize_for_simple_graphdef(self):
   graph, in_name, out_name = _make_redundant_add_one_graph()
   graph_def = graph.as_graph_def()
   init_op = None
   in_names = [in_name]
   out_names = [out_name]
   gs = graph_spec.GraphSpec(graph_def, init_op, in_names, out_names)
   config_proto = tf.compat.v1.ConfigProto()
   opt_graph_spec = graph_optimizations.optimize_graph_spec(gs, config_proto)
   self.assertIsInstance(opt_graph_spec, graph_spec.GraphSpec)
   self.assertLess(opt_graph_spec.graph_def.ByteSize(), graph_def.ByteSize())
Exemple #17
0
    def test_nested_composition_three_add_one_graphs_adds_three(self):
        graph1, input_name_1, output_name_1 = _make_add_variable_number_graph()
        graph2, input_name_2, output_name_2 = _make_add_variable_number_graph()
        graph3, input_name_3, output_name_3 = _make_add_variable_number_graph()
        with graph1.as_default():
            init_op_name_1 = tf.compat.v1.global_variables_initializer().name
        with graph2.as_default():
            init_op_name_2 = tf.compat.v1.global_variables_initializer().name
        with graph3.as_default():
            init_op_name_3 = tf.compat.v1.global_variables_initializer().name
        graph_spec_1 = graph_spec.GraphSpec(graph1.as_graph_def(),
                                            init_op_name_1, [input_name_1],
                                            [output_name_1])
        graph_spec_2 = graph_spec.GraphSpec(graph2.as_graph_def(),
                                            init_op_name_2, [input_name_2],
                                            [output_name_2])
        arg_list = [graph_spec_1, graph_spec_2]
        (partial_merge_graph, partial_merge_init_op_name,
         partial_merge_in_name_map, partial_merge_out_name_map
         ) = graph_merge.compose_graph_specs(arg_list)

        partial_graph_spec = graph_spec.GraphSpec(
            partial_merge_graph.as_graph_def(), partial_merge_init_op_name,
            partial_merge_in_name_map.values(),
            partial_merge_out_name_map.values())
        graph_spec_3 = graph_spec.GraphSpec(graph3.as_graph_def(),
                                            init_op_name_3, [input_name_3],
                                            [output_name_3])
        composed_graph, init_op_name, in_name_map, out_name_map = graph_merge.compose_graph_specs(
            [graph_spec_3, partial_graph_spec])

        with tf.compat.v1.Session(graph=composed_graph) as sess:
            sess.run(init_op_name)
            outputs = sess.run(
                out_name_map[output_name_3],
                feed_dict={
                    in_name_map[partial_merge_in_name_map[input_name_1]]: 0.0,
                })

        self.assertAllClose(outputs, np.array(3.))
Exemple #18
0
 def test_reduces_bytesize_for_dataset_reduction(self):
   ds_graph, _, out = _make_dataset_constructing_graph()
   graph, _, out_name = _make_manual_reduce_graph(ds_graph, out)
   with graph.as_default():
     init_op = tf.compat.v1.global_variables_initializer().name
   graph_def = graph.as_graph_def()
   in_names = []
   out_names = [out_name]
   gs = graph_spec.GraphSpec(graph_def, init_op, in_names, out_names)
   config_proto = tf.compat.v1.ConfigProto()
   opt_graph_spec = graph_optimizations.optimize_graph_spec(gs, config_proto)
   self.assertIsInstance(opt_graph_spec, graph_spec.GraphSpec)
   self.assertLess(opt_graph_spec.graph_def.ByteSize(), graph_def.ByteSize())
Exemple #19
0
    def test_semantic_equivalence_for_graphdef_with_function(self):
        class StateHolder:
            pass

        obj = StateHolder()
        obj.variable = None

        @tf.function
        def foo(x):
            if obj.variable is None:
                obj.variable = tf.Variable(initial_value=0.)
                obj.variable.assign_add(x)
            return obj.variable.read_value()

        with tf.Graph().as_default() as g:
            x = tf.compat.v1.placeholder(shape=[], dtype=tf.float32)
            y = foo(x)
            init_op = tf.compat.v1.global_variables_initializer()

        graph_def = g.as_graph_def()
        in_name = x.name
        out_name = y.name
        init_op_name = init_op.name

        in_names = [in_name]
        out_names = [out_name]
        gs = graph_spec.GraphSpec(graph_def, init_op_name, in_names, out_names)
        config_proto = tf.compat.v1.ConfigProto()
        opt_graph_spec = graph_optimizations.optimize_graph_spec(
            gs, config_proto)

        with tf.Graph().as_default() as orig_graph:
            tf.graph_util.import_graph_def(gs.graph_def, name='')

        with tf.compat.v1.Session(graph=orig_graph) as sess:
            sess.run(gs.init_op)
            orig_out = sess.run(gs.out_names,
                                feed_dict={x: 1
                                           for x in gs.in_names})

        with tf.Graph().as_default() as new_graph:
            tf.graph_util.import_graph_def(opt_graph_spec.graph_def, name='')

        with tf.compat.v1.Session(graph=new_graph) as new_sess:
            new_sess.run(opt_graph_spec.init_op)
            new_out = new_sess.run(
                opt_graph_spec.out_names,
                feed_dict={x: 1
                           for x in opt_graph_spec.in_names})

        self.assertEqual(new_out, orig_out)
Exemple #20
0
    def test_compose_with_dataset_wires_correctly(self):
        with tf.Graph().as_default() as dataset_graph:
            d1 = tf.data.Dataset.range(5)
            v1 = tf.data.experimental.to_variant(d1)

        ds_out_name = v1.name
        variant_type = v1.dtype

        with tf.Graph().as_default() as reduce_graph:
            variant = tf.compat.v1.placeholder(variant_type)
            structure = tf.TensorSpec([], tf.int64)
            ds1 = tf.data.experimental.from_variant(variant,
                                                    structure=structure)
            out = ds1.reduce(tf.constant(0, dtype=tf.int64),
                             lambda x, y: x + y)

        ds_in_name = variant.name
        reduce_out_name = out.name

        with dataset_graph.as_default():
            init_op_name_1 = tf.compat.v1.global_variables_initializer().name
        with reduce_graph.as_default():
            init_op_name_2 = tf.compat.v1.global_variables_initializer().name
        dataset_graph_spec = graph_spec.GraphSpec(dataset_graph.as_graph_def(),
                                                  init_op_name_1, [],
                                                  [ds_out_name])
        reduce_graph_spec = graph_spec.GraphSpec(reduce_graph.as_graph_def(),
                                                 init_op_name_2, [ds_in_name],
                                                 [reduce_out_name])
        arg_list = [reduce_graph_spec, dataset_graph_spec]
        composed_graph, _, _, out_name_map = graph_merge.compose_graph_specs(
            arg_list)

        with composed_graph.as_default():
            with tf.compat.v1.Session() as sess:
                ten = sess.run(out_name_map[reduce_out_name])
        self.assertEqual(ten, 10)
Exemple #21
0
    def test_composition_happens_in_mathematical_composition_order(self):
        graph1, input_name_1, output_name_1 = _make_add_one_graph()

        def _make_cast_to_int_graph():
            with tf.Graph().as_default() as graph:
                input_val = tf.compat.v1.placeholder(tf.float32, name='input')
                out = tf.cast(input_val, tf.int32)
            return graph, input_val.name, out.name

        graph2, input_name_2, output_name_2 = _make_cast_to_int_graph()

        with graph1.as_default():
            init_op_name_1 = tf.compat.v1.global_variables_initializer().name
        with graph2.as_default():
            init_op_name_2 = tf.compat.v1.global_variables_initializer().name
        graph_spec_1 = graph_spec.GraphSpec(graph1.as_graph_def(),
                                            init_op_name_1, [input_name_1],
                                            [output_name_1])
        graph_spec_2 = graph_spec.GraphSpec(graph2.as_graph_def(),
                                            init_op_name_2, [input_name_2],
                                            [output_name_2])
        arg_list = [graph_spec_2, graph_spec_1]

        composed_graph, _, in_name_map, out_name_map = graph_merge.compose_graph_specs(
            arg_list)

        with composed_graph.as_default():
            with tf.compat.v1.Session() as sess:
                outputs = sess.run(out_name_map[output_name_2],
                                   feed_dict={
                                       in_name_map[input_name_1]: 0.0,
                                   })

        self.assertEqual(outputs, 1)

        with self.assertRaises(ValueError):
            graph_merge.compose_graph_specs(list(reversed(arg_list)))
Exemple #22
0
    def test_compose_two_add_variable_number_graphs_executes_correctly(self):
        graph1, input_name_1, output_name_1 = _make_add_variable_number_graph()
        graph2, input_name_2, output_name_2 = _make_add_variable_number_graph()
        with graph1.as_default():
            init_op_name_1 = tf.compat.v1.global_variables_initializer().name
        with graph2.as_default():
            init_op_name_2 = tf.compat.v1.global_variables_initializer().name
        graph_spec_1 = graph_spec.GraphSpec(graph1.as_graph_def(),
                                            init_op_name_1, [input_name_1],
                                            [output_name_1])
        graph_spec_2 = graph_spec.GraphSpec(graph2.as_graph_def(),
                                            init_op_name_2, [input_name_2],
                                            [output_name_2])
        arg_list = [graph_spec_1, graph_spec_2]
        composed_graph, init_op_name, in_name_map, out_name_map = graph_merge.compose_graph_specs(
            arg_list)

        with tf.compat.v1.Session(graph=composed_graph) as sess:
            sess.run(init_op_name)
            output_one = sess.run(out_name_map[output_name_2],
                                  feed_dict={
                                      in_name_map[input_name_1]: 0.0,
                                  })
            sess.run(init_op_name)  # TFF is functional, reset session state.
            output_two = sess.run(out_name_map[output_name_2],
                                  feed_dict={
                                      in_name_map[input_name_1]: 0.0,
                                  })
            sess.run(init_op_name)  # TFF is functional, reset session state.
            output_three = sess.run(out_name_map[output_name_2],
                                    feed_dict={
                                        in_name_map[input_name_1]: 0.0,
                                    })

        self.assertAllClose(output_one, np.array(2.))
        self.assertAllClose(output_two, np.array(2.))
        self.assertAllClose(output_three, np.array(2.))
Exemple #23
0
    def test_concatenate_inputs_and_outputs_no_init_op_graphs(self):
        graph1, input_name_1, output_name_1 = _make_add_one_graph()
        graph2, input_name_2, output_name_2 = _make_add_one_graph()
        graph_spec_1 = graph_spec.GraphSpec(graph1.as_graph_def(), None,
                                            [input_name_1], [output_name_1])
        graph_spec_2 = graph_spec.GraphSpec(graph2.as_graph_def(), None,
                                            [input_name_2], [output_name_2])
        arg_list = [graph_spec_1, graph_spec_2]
        merged_graph, init_op_name, in_name_maps, out_name_maps = graph_merge.concatenate_inputs_and_outputs(
            arg_list)

        with tf.compat.v1.Session(graph=merged_graph) as sess:
            sess.run(init_op_name)
            outputs = sess.run(
                [
                    out_name_maps[0][output_name_1],
                    out_name_maps[1][output_name_2]
                ],
                feed_dict={
                    in_name_maps[0][input_name_1]: 1.0,
                    in_name_maps[1][input_name_2]: 2.0
                })

        self.assertAllClose(outputs, np.array([2., 3.]))
  def test_meta_graph_def_runs_simplest_case(self):
    graph, in_name, out_name = _make_add_one_graph()
    graph_def = graph.as_graph_def()
    init_op = None
    in_names = [in_name]
    out_names = [out_name]
    gs = graph_spec.GraphSpec(graph_def, init_op, in_names, out_names)
    metagraphdef = gs.to_meta_graph_def()

    with tf.Graph().as_default() as g:
      tf.compat.v1.train.import_meta_graph(metagraphdef)

    with tf.compat.v1.Session(graph=g) as sess:
      should_be_one = sess.run(out_name, feed_dict={in_name: 0})

    self.assertEqual(should_be_one, 1.)
  def test_meta_graph_def_restores_and_runs_with_datasets(self):
    dataset_graph, _, dataset_out_name = _make_dataset_constructing_graph()
    graph, _, out_name = _make_manual_reduce_graph(dataset_graph,
                                                   dataset_out_name)

    with graph.as_default():
      init_op = tf.compat.v1.global_variables_initializer().name

    graph_def = graph.as_graph_def()
    in_names = []
    out_names = [out_name]
    gs = graph_spec.GraphSpec(graph_def, init_op, in_names, out_names)
    metagraphdef = gs.to_meta_graph_def()

    with tf.Graph().as_default() as g:
      tf.compat.v1.train.import_meta_graph(metagraphdef)
      restored_init_op = tf.compat.v1.get_collection(
          tf.compat.v1.GraphKeys.INIT_OP)

    with tf.compat.v1.Session(graph=g) as sess:
      sess.run(restored_init_op)
      should_be_ten = sess.run(out_name)

    self.assertEqual(should_be_ten, 10)
Exemple #26
0
 def test_raises_on_graph_spec_set(self):
     graph1, input_name_1, output_name_1 = _make_add_one_graph()
     graph_spec_1 = graph_spec.GraphSpec(graph1.as_graph_def(), '',
                                         [input_name_1], [output_name_1])
     with self.assertRaises(TypeError):
         graph_merge.compose_graph_specs(set(graph_spec_1))
 def test_graph_spec_fails_out_names_ints(self):
   graph_def = _make_add_one_graph()[0].as_graph_def()
   with self.assertRaises(TypeError):
     graph_spec.GraphSpec(graph_def, 'test', ['test'], [1])
 def test_graph_spec_succeeds_empty_init_op(self):
   graph_def = _make_add_one_graph()[0].as_graph_def()
   graph_spec.GraphSpec(graph_def, '', ['test'], ['test'])
 def test_graph_spec_fails_bad_init_op(self):
   graph_def = _make_add_one_graph()[0].as_graph_def()
   with self.assertRaises(TypeError):
     graph_spec.GraphSpec(graph_def, 1, ['test'], ['test'])
 def test_graph_spec_fails_no_graph_def(self):
   with self.assertRaises(TypeError):
     graph_spec.GraphSpec(None, 'test', ['test'], ['test'])