Exemple #1
0
def _create_sub_keys(
        spec: config.MetricsSpec) -> Optional[List[metric_types.SubKey]]:
    """Creates subkeys associated with spec."""
    sub_keys = None
    if spec.HasField('binarize'):
        sub_keys = []
        if spec.binarize.class_ids.values:
            for v in spec.binarize.class_ids.values:
                sub_keys.append(metric_types.SubKey(class_id=v))
        if spec.binarize.k_list.values:
            for v in spec.binarize.k_list.values:
                sub_keys.append(metric_types.SubKey(k=v))
        if spec.binarize.top_k_list.values:
            for v in spec.binarize.top_k_list.values:
                sub_keys.append(metric_types.SubKey(top_k=v))
        if spec.aggregate.micro_average:
            # Micro averaging is performed by flattening the labels and predictions
            # and treating them as independent pairs. This is done by default by most
            # metrics whenever binarization is not used. If micro-averaging and
            # binarization are used, then we need to create an empty subkey to ensure
            # the overall aggregate key is still computed. Note that the class_weights
            # should always be passed to all metric calculations to ensure they are
            # taken into account when flattening is required.
            sub_keys.append(None)
    return sub_keys
def _create_sub_keys(
        spec: config.MetricsSpec) -> Optional[List[metric_types.SubKey]]:
    """Creates subkeys associated with spec."""
    sub_keys = None
    if spec.HasField('binarize'):
        sub_keys = []
        if spec.binarize.class_ids:
            for v in spec.binarize.class_ids:
                sub_keys.append(metric_types.SubKey(class_id=v))
        if spec.binarize.k_list:
            for v in spec.binarize.k_list:
                sub_keys.append(metric_types.SubKey(k=v))
        if spec.binarize.top_k_list:
            for v in spec.binarize.top_k_list:
                sub_keys.append(metric_types.SubKey(top_k=v))
    return sub_keys