def test_matrices_from_component(self): num_timesteps = 4 drift_scale = 1.23 period = 12 frequency_multipliers = [1, 3] component = SmoothSeasonal(period=period, frequency_multipliers=frequency_multipliers) ssm = component.make_state_space_model(num_timesteps, [drift_scale]) frequency_0 = 2 * np.pi * frequency_multipliers[0] / period frequency_1 = 2 * np.pi * frequency_multipliers[1] / period first_frequency_transition = tf.linalg.LinearOperatorFullMatrix( [[tf.cos(frequency_0), tf.sin(frequency_0)], [-tf.sin(frequency_0), tf.cos(frequency_0)]]) second_frequency_transition = tf.linalg.LinearOperatorFullMatrix( [[tf.cos(frequency_1), tf.sin(frequency_1)], [-tf.sin(frequency_1), tf.cos(frequency_1)]]) latents_transition = self.evaluate( tf.linalg.LinearOperatorBlockDiag( [first_frequency_transition, second_frequency_transition]).to_dense()) for t in range(num_timesteps): observation_matrix = self.evaluate( ssm.get_observation_matrix_for_timestep(t).to_dense()) self.assertAllClose([[1.0, 0.0, 1.0, 0.0]], observation_matrix) observation_noise_mean = self.evaluate( ssm.get_observation_noise_for_timestep(t).mean()) observation_noise_covariance = self.evaluate( ssm.get_observation_noise_for_timestep(t).covariance()) self.assertAllClose([0.0], observation_noise_mean) self.assertAllClose([[0.0]], observation_noise_covariance) transition_matrix = self.evaluate( ssm.get_transition_matrix_for_timestep(t).to_dense()) self.assertAllClose(latents_transition, transition_matrix) transition_noise_mean = self.evaluate( ssm.get_transition_noise_for_timestep(t).mean()) transition_noise_covariance = self.evaluate( ssm.get_transition_noise_for_timestep(t).covariance()) self.assertAllClose(np.zeros([4]), transition_noise_mean) self.assertAllClose( np.square(drift_scale) * np.eye(4), transition_noise_covariance)
def test_accepts_tensor_valued_period_and_frequency_multipliers(self): period = tf.constant(100.) frequency_multipliers = tf.constant([1., 3.]) drift_scale = tf.constant([2.]) component = SmoothSeasonal( period=period, frequency_multipliers=frequency_multipliers) ssm = component.make_state_space_model( num_timesteps=3, param_vals=[drift_scale]) self.assertAllEqual(component.latent_size, 4) self.assertAllEqual(ssm.latent_size, 4)
def _build_sts(self, observed_time_series=None): smooth_seasonal = SmoothSeasonal(period=42, frequency_multipliers=[1, 2, 4], allow_drift=False, observed_time_series=observed_time_series) # The test harness doesn't like models with no parameters, so wrap with Sum. return tfp.sts.Sum([smooth_seasonal], observed_time_series=observed_time_series)
def _build_sts(self, observed_time_series=None): return SmoothSeasonal(period=42, frequency_multipliers=[1, 2, 4], observed_time_series=observed_time_series)