def main(): """Run preprocessing process.""" parser = argparse.ArgumentParser( description="Compute mean and variance of dumped raw features " "(See detail in tensorflow_tts/bin/compute_statistics.py).") parser.add_argument("--rootdir", type=str, required=True, help="directory including feature files. ") parser.add_argument("--config", type=str, required=True, help="yaml format configuration file.") parser.add_argument("--outdir", default=None, type=str, required=True, help="directory to save statistics.") parser.add_argument("--verbose", type=int, default=1, help="logging level. higher is more logging. (default=1)") args = parser.parse_args() # set logger if args.verbose > 1: logging.basicConfig( level=logging.DEBUG, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s") elif args.verbose > 0: logging.basicConfig( level=logging.INFO, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s") else: logging.basicConfig( level=logging.WARN, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s") logging.warning('Skip DEBUG/INFO messages') # load config with open(args.config) as f: config = yaml.load(f, Loader=yaml.Loader) config.update(vars(args)) # check directory existence if args.outdir is None: args.outdir = os.path.dirname(args.rootdir) if not os.path.exists(args.outdir): os.makedirs(args.outdir) # get dataset if config["format"] == "npy": mel_query = "*-raw-feats.npy" f0_query = "*-raw-f0.npy" energy_query = "*-raw-energy.npy" mel_load_fn = np.load else: raise ValueError("Support only npy format.") dataset = MelDataset( args.rootdir, mel_query=mel_query, mel_load_fn=mel_load_fn ).create(batch_size=1) # calculate statistics scaler = StandardScaler() for mel, mel_length in tqdm(dataset): mel = mel[0].numpy() scaler.partial_fit(mel) # save to file stats = np.stack([scaler.mean_, scaler.scale_], axis=0) np.save(os.path.join(args.outdir, "stats.npy"), stats.astype(np.float32), allow_pickle=False) # calculate statistic of f0 f0_dataset = AudioDataset( args.rootdir, audio_query=f0_query, audio_load_fn=np.load, ).create(batch_size=1) pitch_vecs = [] for f0, f0_length in tqdm(f0_dataset): f0 = f0[0].numpy() # [T] f0 = remove_outlier(f0) pitch_vecs.append(f0) nonzeros = np.concatenate([v[np.where(v != 0.0)[0]] for v in pitch_vecs]) mean, std = np.mean(nonzeros), np.std(nonzeros) # save to file stats = np.stack([mean, std], axis=0) np.save(os.path.join(args.outdir, "stats_f0.npy"), stats.astype(np.float32), allow_pickle=False) # calculate statistic of energy energy_dataset = AudioDataset( args.rootdir, audio_query=energy_query, audio_load_fn=np.load, ).create(batch_size=1) energy_vecs = [] for e, e_length in tqdm(energy_dataset): e = e[0].numpy() e = remove_outlier(e) energy_vecs.append(e) nonzeros = np.concatenate([v[np.where(v != 0.0)[0]] for v in energy_vecs]) mean, std = np.mean(nonzeros), np.std(nonzeros) # save to file stats = np.stack([mean, std], axis=0) np.save(os.path.join(args.outdir, "stats_energy.npy"), stats.astype(np.float32), allow_pickle=False)
def main(): """Run preprocessing process.""" parser = argparse.ArgumentParser( description= "Normalize dumped raw features (See detail in tensorflow_tts/bin/normalize.py)." ) parser.add_argument( "--rootdir", default=None, type=str, required=True, help="directory including feature files to be normalized. ") parser.add_argument("--outdir", type=str, required=True, help="directory to dump normalized feature files.") parser.add_argument("--stats", type=str, required=True, help="statistics file.") parser.add_argument("--config", type=str, required=True, help="yaml format configuration file.") parser.add_argument( "--verbose", type=int, default=1, help="logging level. higher is more logging. (default=1)") args = parser.parse_args() # set logger if args.verbose > 1: logging.basicConfig( level=logging.DEBUG, format= "%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s") elif args.verbose > 0: logging.basicConfig( level=logging.INFO, format= "%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s") else: logging.basicConfig( level=logging.WARN, format= "%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s") logging.warning('Skip DEBUG/INFO messages') # load config with open(args.config) as f: config = yaml.load(f, Loader=yaml.Loader) config.update(vars(args)) # check directory existence os.makedirs(args.outdir, exist_ok=True) os.makedirs(os.path.join(args.outdir, 'train', 'norm-feats'), exist_ok=True) os.makedirs(os.path.join(args.outdir, 'valid', 'norm-feats'), exist_ok=True) # get dataset if args.rootdir is not None: if config["format"] == "npy": mel_query = "*-raw-feats.npy" def mel_load_fn(x): return np.load(x, allow_pickle=True) else: raise ValueError("support only npy format.") dataset = MelDataset( args.rootdir, mel_query=mel_query, mel_load_fn=mel_load_fn, return_utt_id=True, ).create(batch_size=1) # restore scaler scaler = StandardScaler() if config["format"] == "npy": scaler.mean_ = np.load(args.stats)[0] scaler.scale_ = np.load(args.stats)[1] else: raise ValueError("Support only npy format") # load train/valid utt_ids train_utt_ids = np.load(os.path.join(args.rootdir, 'train_utt_ids.npy')) valid_utt_ids = np.load(os.path.join(args.rootdir, 'valid_utt_ids.npy')) # process each file for items in tqdm(dataset): utt_id, mel, _ = items # convert to numpy utt_id = utt_id[0].numpy().decode("utf-8") mel = mel[0].numpy() # normalize mel = scaler.transform(mel) # save if config["format"] == "npy": if utt_id in train_utt_ids: subdir = "train" elif utt_id in valid_utt_ids: subdir = "valid" np.save(os.path.join(args.outdir, subdir, "norm-feats", f"{utt_id}-norm-feats.npy"), mel.astype(np.float32), allow_pickle=False) else: raise ValueError("support only npy format.")
def main(): """Run melgan decoding from folder.""" parser = argparse.ArgumentParser( description="Generate Audio from melspectrogram with trained melgan " "(See detail in example/melgan/decode_melgan.py)." ) parser.add_argument( "--rootdir", default=None, type=str, required=True, help="directory including ids/durations files.", ) parser.add_argument( "--outdir", type=str, required=True, help="directory to save generated speech." ) parser.add_argument( "--checkpoint", type=str, required=True, help="checkpoint file to be loaded." ) parser.add_argument( "--use-norm", type=int, default=1, help="Use norm or raw melspectrogram." ) parser.add_argument("--batch-size", type=int, default=8, help="batch_size.") parser.add_argument( "--config", default=None, type=str, required=True, help="yaml format configuration file. if not explicitly provided, " "it will be searched in the checkpoint directory. (default=None)", ) parser.add_argument( "--verbose", type=int, default=1, help="logging level. higher is more logging. (default=1)", ) args = parser.parse_args() # set logger if args.verbose > 1: logging.basicConfig( level=logging.DEBUG, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", ) elif args.verbose > 0: logging.basicConfig( level=logging.INFO, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", ) else: logging.basicConfig( level=logging.WARN, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", ) logging.warning("Skip DEBUG/INFO messages") # check directory existence if not os.path.exists(args.outdir): os.makedirs(args.outdir) # load config with open(args.config) as f: config = yaml.load(f, Loader=yaml.Loader) config.update(vars(args)) if config["format"] == "npy": mel_query = "*-norm-feats.npy" if args.use_norm == 1 else "*-raw-feats.npy" mel_load_fn = np.load else: raise ValueError("Only npy is supported.") # define data-loader dataset = MelDataset( root_dir=args.rootdir, mel_query=mel_query, mel_load_fn=mel_load_fn, ) dataset = dataset.create(batch_size=args.batch_size) # define model and load checkpoint melgan = TFMelGANGenerator( config=MelGANGeneratorConfig(**config["generator_params"]), name="melgan" ) melgan._build() melgan.load_weights(args.checkpoint) for data in tqdm(dataset, desc="[Decoding]"): utt_ids, mels, mel_lengths = data["utt_ids"], data["mels"], data["mel_lengths"] # melgan inference. generated_audios = melgan(mels) # convert to numpy. generated_audios = generated_audios.numpy() # [B, T] # save to outdir for i, audio in enumerate(generated_audios): utt_id = utt_ids[i].numpy().decode("utf-8") sf.write( os.path.join(args.outdir, f"{utt_id}.wav"), audio[: mel_lengths[i].numpy() * config["hop_size"]], config["sampling_rate"], "PCM_16", )