Exemple #1
0
    def decoder(self, z, name='decoder', is_reuse=False):
        with tf.variable_scope(name) as scope:
            if is_reuse is True:
                scope.reuse_variables()
            tf_utils.print_activations(z)

            # 1st hidden layer
            h0_linear = tf_utils.linear(z, self.n_hidden, name='h0_linear')
            h0_tanh = tf_utils.tanh(h0_linear, name='h0_tanh')
            h0_drop = tf.nn.dropout(h0_tanh,
                                    keep_prob=self.keep_prob_tfph,
                                    name='h0_drop')
            tf_utils.print_activations(h0_drop)

            # 2nd hidden layer
            h1_linear = tf_utils.linear(h0_drop,
                                        self.n_hidden,
                                        name='h1_linear')
            h1_elu = tf_utils.elu(h1_linear, name='h1_elu')
            h1_drop = tf.nn.dropout(h1_elu,
                                    keep_prob=self.keep_prob_tfph,
                                    name='h1_drop')
            tf_utils.print_activations(h1_drop)

            # 3rd hidden layer
            h2_linear = tf_utils.linear(h1_drop,
                                        self.output_dim,
                                        name='h2_linear')
            h2_sigmoid = tf_utils.sigmoid(h2_linear, name='h2_sigmoid')
            tf_utils.print_activations(h2_sigmoid)

            output = tf.reshape(h2_sigmoid, [-1, *self.image_size])
            tf_utils.print_activations(output)

        return output
Exemple #2
0
    def basicGenerator(self, data, name='g_'):
        with tf.variable_scope(name):
            data_flatten = flatten(data)
            tf_utils.print_activations(data_flatten)

            # from (N, 128) to (N, 4, 4, 256)
            h0_linear = tf_utils.linear(data_flatten,
                                        self.gen_c[0],
                                        name='h0_linear')
            if self.flags.dataset == 'cifar10':
                h0_linear = tf.reshape(h0_linear, [
                    tf.shape(h0_linear)[0], 4, 4,
                    int(self.gen_c[0] / (4 * 4))
                ])
                h0_linear = tf_utils.norm(h0_linear,
                                          _type='batch',
                                          _ops=self.gen_train_ops,
                                          name='h0_norm')
            h0_relu = tf.nn.relu(h0_linear, name='h0_relu')
            h0_reshape = tf.reshape(
                h0_relu,
                [tf.shape(h0_relu)[0], 4, 4,
                 int(self.gen_c[0] / (4 * 4))])

            # from (N, 4, 4, 256) to (N, 8, 8, 128)
            h1_deconv = tf_utils.deconv2d(h0_reshape,
                                          self.gen_c[1],
                                          k_h=5,
                                          k_w=5,
                                          name='h1_deconv2d')
            if self.flags.dataset == 'cifar10':
                h1_deconv = tf_utils.norm(h1_deconv,
                                          _type='batch',
                                          _ops=self.gen_train_ops,
                                          name='h1_norm')
            h1_relu = tf.nn.relu(h1_deconv, name='h1_relu')

            # from (N, 8, 8, 128) to (N, 16, 16, 64)
            h2_deconv = tf_utils.deconv2d(h1_relu,
                                          self.gen_c[2],
                                          k_h=5,
                                          k_w=5,
                                          name='h2_deconv2d')
            if self.flags.dataset == 'cifar10':
                h2_deconv = tf_utils.norm(h2_deconv,
                                          _type='batch',
                                          _ops=self.gen_train_ops,
                                          name='h2_norm')
            h2_relu = tf.nn.relu(h2_deconv, name='h2_relu')

            # from (N, 16, 16, 64) to (N, 32, 32, 1)
            output = tf_utils.deconv2d(h2_relu,
                                       self.image_size[2],
                                       k_h=5,
                                       k_w=5,
                                       name='h3_deconv2d')

            return tf_utils.tanh(output)
Exemple #3
0
    def __call__(self, x):
        with tf.variable_scope(self.name, reuse=self.reuse):
            tf_utils.print_activations(x)

            # (N, H, W, C) -> (N, H, W, 64)
            conv1 = tf_utils.padding2d(x, p_h=3, p_w=3, pad_type='REFLECT', name='conv1_padding')
            conv1 = tf_utils.conv2d(conv1, self.ngf, k_h=7, k_w=7, d_h=1, d_w=1, padding='VALID',
                                    name='conv1_conv')
            conv1 = tf_utils.norm(conv1, _type='instance', _ops=self._ops, name='conv1_norm')
            conv1 = tf_utils.relu(conv1, name='conv1_relu', is_print=True)

            # (N, H, W, 64)  -> (N, H/2, W/2, 128)
            conv2 = tf_utils.conv2d(conv1, 2*self.ngf, k_h=3, k_w=3, d_h=2, d_w=2, padding='SAME',
                                    name='conv2_conv')
            conv2 = tf_utils.norm(conv2, _type='instance', _ops=self._ops, name='conv2_norm',)
            conv2 = tf_utils.relu(conv2, name='conv2_relu', is_print=True)

            # (N, H/2, W/2, 128) -> (N, H/4, W/4, 256)
            conv3 = tf_utils.conv2d(conv2, 4*self.ngf, k_h=3, k_w=3, d_h=2, d_w=2, padding='SAME',
                                    name='conv3_conv')
            conv3 = tf_utils.norm(conv3, _type='instance', _ops=self._ops, name='conv3_norm',)
            conv3 = tf_utils.relu(conv3, name='conv3_relu', is_print=True)

            # (N, H/4, W/4, 256) -> (N, H/4, W/4, 256)
            if (self.image_size[0] <= 128) and (self.image_size[1] <= 128):
                # use 6 residual blocks for 128x128 images
                res_out = tf_utils.n_res_blocks(conv3, num_blocks=6, is_print=True)
            else:
                # use 9 blocks for higher resolution
                res_out = tf_utils.n_res_blocks(conv3, num_blocks=9, is_print=True)

            # (N, H/4, W/4, 256) -> (N, H/2, W/2, 128)
            conv4 = tf_utils.deconv2d(res_out, 2*self.ngf, name='conv4_deconv2d')
            conv4 = tf_utils.norm(conv4, _type='instance', _ops=self._ops, name='conv4_norm')
            conv4 = tf_utils.relu(conv4, name='conv4_relu', is_print=True)

            # (N, H/2, W/2, 128) -> (N, H, W, 64)
            conv5 = tf_utils.deconv2d(conv4, self.ngf, name='conv5_deconv2d')
            conv5 = tf_utils.norm(conv5, _type='instance', _ops=self._ops, name='conv5_norm')
            conv5 = tf_utils.relu(conv5, name='conv5_relu', is_print=True)

            # (N, H, W, 64) -> (N, H, W, 3)
            conv6 = tf_utils.padding2d(conv5, p_h=3, p_w=3, pad_type='REFLECT', name='output_padding')
            conv6 = tf_utils.conv2d(conv6, self.image_size[2], k_h=7, k_w=7, d_h=1, d_w=1,
                                    padding='VALID', name='output_conv')
            output = tf_utils.tanh(conv6, name='output_tanh', is_print=True)

            # set reuse=True for next call
            self.reuse = True
            self.variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.name)

            return output
Exemple #4
0
    def encoder(self, data, name='encoder'):
        with tf.variable_scope(name):
            data_flatten = flatten(data)
            tf_utils.print_activations(data_flatten)

            # 1st hidden layer
            h0_linear = tf_utils.linear(data_flatten,
                                        self.n_hidden,
                                        name='h0_linear')
            h0_elu = tf_utils.elu(h0_linear, name='h0_elu')
            h0_drop = tf.nn.dropout(h0_elu,
                                    keep_prob=self.keep_prob_tfph,
                                    name='h0_drop')
            tf_utils.print_activations(h0_drop)

            # 2nd hidden layer
            h1_linear = tf_utils.linear(h0_drop,
                                        self.n_hidden,
                                        name='h1_linear')
            h1_tanh = tf_utils.tanh(h1_linear, name='h1_tanh')
            h1_drop = tf.nn.dropout(h1_tanh,
                                    keep_prob=self.keep_prob_tfph,
                                    name='h1_drop')
            tf_utils.print_activations(h1_drop)

            # 3rd hidden layer
            h2_linear = tf_utils.linear(h1_drop,
                                        2 * self.flags.z_dim,
                                        name='h2_linear')
            tf_utils.print_activations(h2_linear)

            # The mean parameter is unconstrained
            mean = h2_linear[:, :self.flags.z_dim]
            # The standard deviation must be positive.
            # Parameterize with a softplus and add a small epsilon for numerical stability
            stddev = 1e-6 + tf.nn.softplus(h2_linear[:, self.flags.z_dim:])

            tf_utils.print_activations(mean)
            tf_utils.print_activations(stddev)

        return mean, stddev
    def __call__(self, i_to_s, state, name='DiagonalBiLSTMCell'):
        c_prev = tf.slice(state, begin=[0, 0], size=[-1, self._num_units])
        # [batch, height * hidden_dims]
        h_prev = tf.slice(state,
                          begin=[0, self._num_units],
                          size=[-1, self._num_units])

        # i_to_s: [batch, 4 * height * hidden_dims]
        input_size = i_to_s.get_shape().with_rank(2)[1]

        if input_size.value is None:
            raise ValueError(
                "Could not infer input size from inputs.get_shape()[-1]")

        with tf.variable_scope(name):
            # input-to-state (K_ss * h_{i-1}) : 2x1 convolution. generate 4h x n x n ternsor.
            # [batch, height, 1, hidden_dims]
            conv1d_inputs = tf.reshape(
                h_prev, [-1, self._height, 1, self._hidden_dims],
                name='conv1d_inputs')

            # [batch, height, 1, hidden_dims * 4]
            conv_s_to_s = tf_utils.conv1d(conv1d_inputs,
                                          4 * self._hidden_dims,
                                          kernel_size=2,
                                          name='s_to_s')
            # [batch, height * hidden_dims * 4]
            s_to_s = tf.reshape(conv_s_to_s,
                                [-1, self._height * self._hidden_dims * 4])
            lstm_matrix = tf_utils.sigmoid(s_to_s + i_to_s)

            # i=input_gate, g=new_input, f=forget_gate, o=output_gate
            o, f, i, g = tf.split(lstm_matrix, 4, axis=1)
            c = f * c_prev + i * g
            h = o * tf_utils.tanh(c)

        new_state = tf.concat([c, h], axis=1)
        return h, new_state
Exemple #6
0
    def __call__(self, x):
        with tf.variable_scope(self.name, reuse=self.reuse):
            tf_utils.print_activations(x)

            # conv: (N, H, W, C) -> (N, H/2, W/2, 64)
            output = tf_utils.conv2d(x,
                                     self.conv_dims[0],
                                     k_h=4,
                                     k_w=4,
                                     d_h=2,
                                     d_w=2,
                                     padding='SAME',
                                     name='conv0_conv2d')
            output = tf_utils.lrelu(output, name='conv0_lrelu', is_print=True)

            for idx, conv_dim in enumerate(self.conv_dims[1:]):
                # conv: (N, H/2, W/2, C) -> (N, H/4, W/4, 2C)
                output = tf_utils.conv2d(output,
                                         conv_dim,
                                         k_h=4,
                                         k_w=4,
                                         d_h=2,
                                         d_w=2,
                                         padding='SAME',
                                         name='conv{}_conv2d'.format(idx + 1))
                output = tf_utils.norm(output,
                                       _type=self.norm,
                                       _ops=self._ops,
                                       name='conv{}_norm'.format(idx + 1))
                output = tf_utils.lrelu(output,
                                        name='conv{}_lrelu'.format(idx + 1),
                                        is_print=True)

            for idx, deconv_dim in enumerate(self.deconv_dims):
                # deconv: (N, H/16, W/16, C) -> (N, W/8, H/8, C/2)
                output = tf_utils.deconv2d(output,
                                           deconv_dim,
                                           k_h=4,
                                           k_w=4,
                                           name='deconv{}_conv2d'.format(idx))
                output = tf_utils.norm(output,
                                       _type=self.norm,
                                       _ops=self._ops,
                                       name='deconv{}_norm'.format(idx))
                output = tf_utils.relu(output,
                                       name='deconv{}_relu'.format(idx),
                                       is_print=True)

            # conv: (N, H/2, W/2, 64) -> (N, W, H, 3)
            output = tf_utils.deconv2d(output,
                                       self.output_channel,
                                       k_h=4,
                                       k_w=4,
                                       name='conv3_deconv2d')
            output = tf_utils.tanh(output, name='conv4_tanh', is_print=True)

            # set reuse=True for next call
            self.reuse = True
            self.variables = tf.get_collection(
                tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.name)
            return output
Exemple #7
0
    def generator(self, data, name='g_'):
        with tf.variable_scope(name):
            data_flatten = flatten(data)
            tf_utils.print_activations(data_flatten)

            # from (N, 128) to (N, 2, 4, 512)
            h0_linear = tf_utils.linear(data_flatten,
                                        self.gen_c[0],
                                        name='h0_linear')
            h0_reshape = tf.reshape(
                h0_linear,
                [tf.shape(h0_linear)[0], 2, 4,
                 int(self.gen_c[0] / (2 * 4))])

            # (N, 4, 8, 512)
            resblock_1 = tf_utils.res_block_v2(h0_reshape,
                                               self.gen_c[1],
                                               filter_size=3,
                                               _ops=self.gen_train_ops,
                                               norm_='batch',
                                               resample='up',
                                               name='res_block_1')
            # (N, 8, 16, 256)
            resblock_2 = tf_utils.res_block_v2(resblock_1,
                                               self.gen_c[2],
                                               filter_size=3,
                                               _ops=self.gen_train_ops,
                                               norm_='batch',
                                               resample='up',
                                               name='res_block_2')
            # (N, 16, 32, 128)
            resblock_3 = tf_utils.res_block_v2(resblock_2,
                                               self.gen_c[3],
                                               filter_size=3,
                                               _ops=self.gen_train_ops,
                                               norm_='batch',
                                               resample='up',
                                               name='res_block_3')
            # (N, 32, 64, 64)
            resblock_4 = tf_utils.res_block_v2(resblock_3,
                                               self.gen_c[4],
                                               filter_size=3,
                                               _ops=self.gen_train_ops,
                                               norm_='batch',
                                               resample='up',
                                               name='res_block_4')
            # (N, 64, 128, 32)
            resblock_5 = tf_utils.res_block_v2(resblock_4,
                                               self.gen_c[5],
                                               filter_size=3,
                                               _ops=self.gen_train_ops,
                                               norm_='batch',
                                               resample='up',
                                               name='res_block_5')
            # (N, 128, 256, 32)
            resblock_6 = tf_utils.res_block_v2(resblock_5,
                                               self.gen_c[6],
                                               filter_size=3,
                                               _ops=self.gen_train_ops,
                                               norm_='batch',
                                               resample='up',
                                               name='res_block_6')

            norm_7 = tf_utils.norm(resblock_6,
                                   _type='batch',
                                   _ops=self.gen_train_ops,
                                   name='norm_7')
            relu_7 = tf_utils.relu(norm_7, name='relu_7')

            # (N, 128, 256, 3)
            output = tf_utils.conv2d(relu_7,
                                     output_dim=self.image_size[2],
                                     k_w=3,
                                     k_h=3,
                                     d_h=1,
                                     d_w=1,
                                     name='output')

            return tf_utils.tanh(output)
    def __call__(self, x, keep_rate=0.5):
        with tf.compat.v1.variable_scope(self.name, reuse=self.reuse):
            tf_utils.print_activations(x, logger=self.logger)

            # E0: (320, 200) -> (160, 100)
            e0_conv2d = tf_utils.conv2d(x,
                                        output_dim=self.gen_c[0],
                                        initializer='He',
                                        logger=self.logger,
                                        name='e0_conv2d')
            e0_lrelu = tf_utils.lrelu(e0_conv2d,
                                      logger=self.logger,
                                      name='e0_lrelu')

            # E1: (160, 100) -> (80, 50)
            e1_conv2d = tf_utils.conv2d(e0_lrelu,
                                        output_dim=self.gen_c[1],
                                        initializer='He',
                                        logger=self.logger,
                                        name='e1_conv2d')
            e1_batchnorm = tf_utils.norm(e1_conv2d,
                                         _type=self.norm,
                                         _ops=self._ops,
                                         logger=self.logger,
                                         name='e1_norm')
            e1_lrelu = tf_utils.lrelu(e1_batchnorm,
                                      logger=self.logger,
                                      name='e1_lrelu')

            # E2: (80, 50) -> (40, 25)
            e2_conv2d = tf_utils.conv2d(e1_lrelu,
                                        output_dim=self.gen_c[2],
                                        initializer='He',
                                        logger=self.logger,
                                        name='e2_conv2d')
            e2_batchnorm = tf_utils.norm(e2_conv2d,
                                         _type=self.norm,
                                         _ops=self._ops,
                                         logger=self.logger,
                                         name='e2_norm')
            e2_lrelu = tf_utils.lrelu(e2_batchnorm,
                                      logger=self.logger,
                                      name='e2_lrelu')

            # E3: (40, 25) -> (20, 13)
            e3_conv2d = tf_utils.conv2d(e2_lrelu,
                                        output_dim=self.gen_c[3],
                                        initializer='He',
                                        logger=self.logger,
                                        name='e3_conv2d')
            e3_batchnorm = tf_utils.norm(e3_conv2d,
                                         _type=self.norm,
                                         _ops=self._ops,
                                         logger=self.logger,
                                         name='e3_norm')
            e3_lrelu = tf_utils.lrelu(e3_batchnorm,
                                      logger=self.logger,
                                      name='e3_lrelu')

            # E4: (20, 13) -> (10, 7)
            e4_conv2d = tf_utils.conv2d(e3_lrelu,
                                        output_dim=self.gen_c[4],
                                        initializer='He',
                                        logger=self.logger,
                                        name='e4_conv2d')
            e4_batchnorm = tf_utils.norm(e4_conv2d,
                                         _type=self.norm,
                                         _ops=self._ops,
                                         logger=self.logger,
                                         name='e4_norm')
            e4_lrelu = tf_utils.lrelu(e4_batchnorm,
                                      logger=self.logger,
                                      name='e4_lrelu')

            # E5: (10, 7) -> (5, 4)
            e5_conv2d = tf_utils.conv2d(e4_lrelu,
                                        output_dim=self.gen_c[5],
                                        initializer='He',
                                        logger=self.logger,
                                        name='e5_conv2d')
            e5_batchnorm = tf_utils.norm(e5_conv2d,
                                         _type=self.norm,
                                         _ops=self._ops,
                                         logger=self.logger,
                                         name='e5_norm')
            e5_lrelu = tf_utils.lrelu(e5_batchnorm,
                                      logger=self.logger,
                                      name='e5_lrelu')

            # E6: (5, 4) -> (3, 2)
            e6_conv2d = tf_utils.conv2d(e5_lrelu,
                                        output_dim=self.gen_c[6],
                                        initializer='He',
                                        logger=self.logger,
                                        name='e6_conv2d')
            e6_batchnorm = tf_utils.norm(e6_conv2d,
                                         _type=self.norm,
                                         _ops=self._ops,
                                         logger=self.logger,
                                         name='e6_norm')
            e6_lrelu = tf_utils.lrelu(e6_batchnorm,
                                      logger=self.logger,
                                      name='e6_lrelu')

            # E7: (3, 2) -> (2, 1)
            e7_conv2d = tf_utils.conv2d(e6_lrelu,
                                        output_dim=self.gen_c[7],
                                        initializer='He',
                                        logger=self.logger,
                                        name='e7_conv2d')
            e7_batchnorm = tf_utils.norm(e7_conv2d,
                                         _type=self.norm,
                                         _ops=self._ops,
                                         logger=self.logger,
                                         name='e7_norm')
            e7_relu = tf_utils.lrelu(e7_batchnorm,
                                     logger=self.logger,
                                     name='e7_relu')

            # D0: (2, 1) -> (3, 2)
            # Stage1: (2, 1) -> (4, 2)
            d0_deconv = tf_utils.deconv2d(e7_relu,
                                          output_dim=self.gen_c[8],
                                          initializer='He',
                                          logger=self.logger,
                                          name='d0_deconv2d')
            # Stage2: (4, 2) -> (3, 2)
            shapeA = e6_conv2d.get_shape().as_list()[1]
            shapeB = d0_deconv.get_shape().as_list()[1] - e6_conv2d.get_shape(
            ).as_list()[1]
            d0_split, _ = tf.split(d0_deconv, [shapeA, shapeB],
                                   axis=1,
                                   name='d0_split')
            tf_utils.print_activations(d0_split, logger=self.logger)
            # Stage3: Batch norm, concatenation, and relu
            d0_batchnorm = tf_utils.norm(d0_split,
                                         _type=self.norm,
                                         _ops=self._ops,
                                         logger=self.logger,
                                         name='d0_norm')
            d0_drop = tf_utils.dropout(d0_batchnorm,
                                       keep_prob=keep_rate,
                                       logger=self.logger,
                                       name='d0_dropout')
            d0_concat = tf.concat([d0_drop, e6_batchnorm],
                                  axis=3,
                                  name='d0_concat')
            d0_relu = tf_utils.relu(d0_concat,
                                    logger=self.logger,
                                    name='d0_relu')

            # D1: (3, 2) -> (5, 4)
            # Stage1: (3, 2) -> (6, 4)
            d1_deconv = tf_utils.deconv2d(d0_relu,
                                          output_dim=self.gen_c[9],
                                          initializer='He',
                                          logger=self.logger,
                                          name='d1_deconv2d')
            # Stage2: (6, 4) -> (5, 4)
            shapeA = e5_batchnorm.get_shape().as_list()[1]
            shapeB = d1_deconv.get_shape().as_list(
            )[1] - e5_batchnorm.get_shape().as_list()[1]
            d1_split, _ = tf.split(d1_deconv, [shapeA, shapeB],
                                   axis=1,
                                   name='d1_split')
            tf_utils.print_activations(d1_split, logger=self.logger)
            # Stage3: Batch norm, concatenation, and relu
            d1_batchnorm = tf_utils.norm(d1_split,
                                         _type=self.norm,
                                         _ops=self._ops,
                                         logger=self.logger,
                                         name='d1_norm')
            d1_drop = tf_utils.dropout(d1_batchnorm,
                                       keep_prob=keep_rate,
                                       logger=self.logger,
                                       name='d1_dropout')
            d1_concat = tf.concat([d1_drop, e5_batchnorm],
                                  axis=3,
                                  name='d1_concat')
            d1_relu = tf_utils.relu(d1_concat,
                                    logger=self.logger,
                                    name='d1_relu')

            # D2: (5, 4) -> (10, 7)
            # Stage1: (5, 4) -> (10, 8)
            d2_deconv = tf_utils.deconv2d(d1_relu,
                                          output_dim=self.gen_c[10],
                                          initializer='He',
                                          logger=self.logger,
                                          name='d2_deconv2d')
            # Stage2: (10, 8) -> (10, 7)
            shapeA = e4_batchnorm.get_shape().as_list()[2]
            shapeB = d2_deconv.get_shape().as_list(
            )[2] - e4_batchnorm.get_shape().as_list()[2]
            d2_split, _ = tf.split(d2_deconv, [shapeA, shapeB],
                                   axis=2,
                                   name='d2_split')
            tf_utils.print_activations(d2_split, logger=self.logger)
            # Stage3: Batch norm, concatenation, and relu
            d2_batchnorm = tf_utils.norm(d2_split,
                                         _type=self.norm,
                                         _ops=self._ops,
                                         logger=self.logger,
                                         name='d2_norm')
            d2_drop = tf_utils.dropout(d2_batchnorm,
                                       keep_prob=keep_rate,
                                       logger=self.logger,
                                       name='d2_dropout')
            d2_concat = tf.concat([d2_drop, e4_batchnorm],
                                  axis=3,
                                  name='d2_concat')
            d2_relu = tf_utils.relu(d2_concat,
                                    logger=self.logger,
                                    name='d2_relu')

            # D3: (10, 7) -> (20, 13)
            # Stage1: (10, 7) -> (20, 14)
            d3_deconv = tf_utils.deconv2d(d2_relu,
                                          output_dim=self.gen_c[11],
                                          initializer='He',
                                          logger=self.logger,
                                          name='d3_deconv2d')
            # Stage2: (20, 14) -> (20, 13)
            shapeA = e3_batchnorm.get_shape().as_list()[2]
            shapeB = d3_deconv.get_shape().as_list(
            )[2] - e3_batchnorm.get_shape().as_list()[2]
            d3_split, _ = tf.split(d3_deconv, [shapeA, shapeB],
                                   axis=2,
                                   name='d3_split_2')
            tf_utils.print_activations(d3_split, logger=self.logger)
            # Stage3: Batch norm, concatenation, and relu
            d3_batchnorm = tf_utils.norm(d3_split,
                                         _type=self.norm,
                                         _ops=self._ops,
                                         logger=self.logger,
                                         name='d3_norm')
            d3_concat = tf.concat([d3_batchnorm, e3_batchnorm],
                                  axis=3,
                                  name='d3_concat')
            d3_relu = tf_utils.relu(d3_concat,
                                    logger=self.logger,
                                    name='d3_relu')

            # D4: (20, 13) -> (40, 25)
            # Stage1: (20, 13) -> (40, 26)
            d4_deconv = tf_utils.deconv2d(d3_relu,
                                          output_dim=self.gen_c[12],
                                          initializer='He',
                                          logger=self.logger,
                                          name='d4_deconv2d')
            # Stage2: (40, 26) -> (40, 25)
            shapeA = e2_batchnorm.get_shape().as_list()[2]
            shapeB = d4_deconv.get_shape().as_list(
            )[2] - e2_batchnorm.get_shape().as_list()[2]
            d4_split, _ = tf.split(d4_deconv, [shapeA, shapeB],
                                   axis=2,
                                   name='d4_split')
            tf_utils.print_activations(d4_split, logger=self.logger)
            # Stage3: Batch norm, concatenation, and relu
            d4_batchnorm = tf_utils.norm(d4_split,
                                         _type=self.norm,
                                         _ops=self._ops,
                                         logger=self.logger,
                                         name='d4_norm')
            d4_concat = tf.concat([d4_batchnorm, e2_batchnorm],
                                  axis=3,
                                  name='d4_concat')
            d4_relu = tf_utils.relu(d4_concat,
                                    logger=self.logger,
                                    name='d4_relu')

            # D5: (40, 25, 256) -> (80, 50, 128)
            d5_deconv = tf_utils.deconv2d(d4_relu,
                                          output_dim=self.gen_c[13],
                                          initializer='He',
                                          logger=self.logger,
                                          name='d5_deconv2d')
            d5_batchnorm = tf_utils.norm(d5_deconv,
                                         _type=self.norm,
                                         _ops=self._ops,
                                         logger=self.logger,
                                         name='d5_norm')
            d5_concat = tf.concat([d5_batchnorm, e1_batchnorm],
                                  axis=3,
                                  name='d5_concat')
            d5_relu = tf_utils.relu(d5_concat,
                                    logger=self.logger,
                                    name='d5_relu')

            # D6: (80, 50, 128) -> (160, 100, 64)
            d6_deconv = tf_utils.deconv2d(d5_relu,
                                          output_dim=self.gen_c[14],
                                          initializer='He',
                                          logger=self.logger,
                                          name='d6_deconv2d')
            d6_batchnorm = tf_utils.norm(d6_deconv,
                                         _type=self.norm,
                                         _ops=self._ops,
                                         logger=self.logger,
                                         name='d6_norm')
            d6_concat = tf.concat([d6_batchnorm, e0_conv2d],
                                  axis=3,
                                  name='d6_concat')
            d6_relu = tf_utils.relu(d6_concat,
                                    logger=self.logger,
                                    name='d6_relu')

            # D7: (160, 100, 64) -> (320, 200, 1)
            d7_deconv = tf_utils.deconv2d(d6_relu,
                                          output_dim=self.gen_c[15],
                                          initializer='He',
                                          logger=self.logger,
                                          name='d7_deconv2d')
            output = tf_utils.tanh(d7_deconv,
                                   logger=self.logger,
                                   name='output_tanh')

            # Set reuse=True for next call
            self.reuse = True
            self.variables = tf.compat.v1.get_collection(
                tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES, scope=self.name)

        return output
Exemple #9
0
    def __call__(self, x):
        with tf.variable_scope(self.name, reuse=self.reuse):
            tf_utils.print_activations(x)

            # conv: (N, H, W, C) -> (N, H/2, W/2, 64)
            output = tf_utils.conv2d(x,
                                     self.conv_dims[0],
                                     k_h=4,
                                     k_w=4,
                                     d_h=2,
                                     d_w=2,
                                     padding='SAME',
                                     name='conv0_conv2d')
            output = tf_utils.lrelu(output, name='conv0_lrelu', is_print=True)

            for idx, conv_dim in enumerate(self.conv_dims[1:]):
                # conv: (N, H/2, W/2, C) -> (N, H/4, W/4, 2C)
                output = tf_utils.conv2d(output,
                                         conv_dim,
                                         k_h=4,
                                         k_w=4,
                                         d_h=2,
                                         d_w=2,
                                         padding='SAME',
                                         name='conv{}_conv2d'.format(idx + 1))
                output = tf_utils.norm(output,
                                       _type=self.norm,
                                       _ops=self._ops,
                                       name='conv{}_norm'.format(idx + 1))
                output = tf_utils.lrelu(output,
                                        name='conv{}_lrelu'.format(idx + 1),
                                        is_print=True)

            for idx, deconv_dim in enumerate(self.deconv_dims):
                # deconv: (N, H/16, W/16, C) -> (N, W/8, H/8, C/2)
                output = tf_utils.deconv2d(output,
                                           deconv_dim,
                                           k_h=4,
                                           k_w=4,
                                           name='deconv{}_conv2d'.format(idx))
                output = tf_utils.norm(output,
                                       _type=self.norm,
                                       _ops=self._ops,
                                       name='deconv{}_norm'.format(idx))
                output = tf_utils.relu(output,
                                       name='deconv{}_relu'.format(idx),
                                       is_print=True)

            # split (N, 152, 104, 64) to (N, 150, 104, 64)
            shapeA = int(self.img_size[0] / 2)
            shapeB = output.get_shape().as_list()[1] - shapeA
            output, _ = tf.split(output, [shapeA, shapeB],
                                 axis=1,
                                 name='split_0')
            tf_utils.print_activations(output)
            # split (N, 150, 104, 64) to (N, 150, 100, 64)
            shapeA = int(self.img_size[1] / 2)
            shapeB = output.get_shape().as_list()[2] - shapeA
            output, _ = tf.split(output, [shapeA, shapeB],
                                 axis=2,
                                 name='split_1')
            tf_utils.print_activations(output)

            # conv: (N, H/2, W/2, 64) -> (N, W, H, 3)
            output = tf_utils.deconv2d(output,
                                       self.img_size[2],
                                       k_h=4,
                                       k_w=4,
                                       name='conv3_deconv2d')
            output = tf_utils.tanh(output, name='conv4_tanh', is_print=True)

            # set reuse=True for next call
            self.reuse = True
            self.variables = tf.get_collection(
                tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.name)
            return output
Exemple #10
0
    def __call__(self, x, is_train=True):
        with tf.variable_scope(self.name, reuse=self.reuse):
            tf_utils.print_activations(x)

            # (N, 100) -> (N, 4, 5, 1024)
            h0_linear = tf_utils.linear(
                x,
                4 * 5 * self.dims[0],
                name='h0_linear',
                initializer='He',
                logger=self.logger if is_train is True else None)
            h0_reshape = tf.reshape(
                h0_linear, [tf.shape(h0_linear)[0], 4, 5, self.dims[0]])
            h0_norm = tf_utils.norm(
                h0_reshape,
                name='h0_batch',
                _type='batch',
                _ops=self._ops,
                is_train=is_train,
                logger=self.logger if is_train is True else None)
            h0_relu = tf_utils.relu(
                h0_norm,
                name='h0_relu',
                logger=self.logger if is_train is True else None)

            # (N, 4, 5, 1024) -> (N, 8, 10, 512)
            h1_deconv = tf_utils.deconv2d(
                h0_relu,
                output_dim=self.dims[1],
                name='h1_deconv2d',
                initializer='He',
                logger=self.logger if is_train is True else None)
            h1_norm = tf_utils.norm(
                h1_deconv,
                name='h1_batch',
                _type='batch',
                _ops=self._ops,
                is_train=is_train,
                logger=self.logger if is_train is True else None)
            h1_relu = tf_utils.relu(
                h1_norm,
                name='h1_relu',
                logger=self.logger if is_train is True else None)

            # (N, 8, 10, 512) -> (N, 16, 20, 256)
            h2_deconv = tf_utils.deconv2d(
                h1_relu,
                output_dim=self.dims[2],
                name='h2_deconv2d',
                initializer='He',
                logger=self.logger if is_train is True else None)
            h2_norm = tf_utils.norm(
                h2_deconv,
                name='h2_batch',
                _type='batch',
                _ops=self._ops,
                is_train=is_train,
                logger=self.logger if is_train is True else None)
            h2_relu = tf_utils.relu(
                h2_norm,
                name='h2_relu',
                logger=self.logger if is_train is True else None)
            # (N, 16, 20, 256) -> (N, 15, 20, 256)
            h2_split, _ = tf.split(h2_relu, [15, 1], axis=1, name='h2_split')
            tf_utils.print_activations(
                h2_split, logger=self.logger if is_train is True else None)

            # (N, 15, 20, 256) -> (N, 30, 40, 128)
            h3_deconv = tf_utils.deconv2d(
                h2_split,
                output_dim=self.dims[3],
                name='h3_deconv2d',
                initializer='He',
                logger=self.logger if is_train is True else None)
            h3_norm = tf_utils.norm(
                h3_deconv,
                name='h3_batch',
                _type='batch',
                _ops=self._ops,
                is_train=is_train,
                logger=self.logger if is_train is True else None)
            h3_relu = tf_utils.relu(
                h3_norm,
                name='h3_relu',
                logger=self.logger if is_train is True else None)

            # (N, 30, 40, 128) -> (N, 60, 80, 64)
            h4_deconv = tf_utils.deconv2d(
                h3_relu,
                output_dim=self.dims[4],
                name='h4_deconv2d',
                initializer='He',
                logger=self.logger if is_train is True else None)
            h4_norm = tf_utils.norm(
                h4_deconv,
                name='h4_batch',
                _type='batch',
                _ops=self._ops,
                is_train=is_train,
                logger=self.logger if is_train is True else None)
            h4_relu = tf_utils.relu(
                h4_norm,
                name='h4_relu',
                logger=self.logger if is_train is True else None)

            # (N, 60, 80, 64) -> (N, 120, 160, 1)
            h5_deconv = tf_utils.deconv2d(
                h4_relu,
                output_dim=self.dims[5],
                name='h5_deconv',
                initializer='He',
                logger=self.logger if is_train is True else None)
            output = tf_utils.tanh(
                h5_deconv,
                name='output',
                logger=self.logger if is_train is True else None)

            # Set reuse=True for next call
            self.reuse = True
            self.variables = tf.get_collection(
                tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.name)

            return output
Exemple #11
0
    def __call__(self, x, is_train=True):
        with tf.variable_scope(self.name, reuse=self.reuse):
            tf_utils.print_activations(x)

            # (N, 100) -> (N, 4, 5, 512)
            h0_linear = tf_utils.linear(
                x,
                4 * 5 * self.dims[0],
                name='h0_linear',
                initializer='He',
                logger=self.logger if is_train is True else None)
            h0_reshape = tf.reshape(
                h0_linear, [tf.shape(h0_linear)[0], 4, 5, self.dims[0]])

            # (N, 4, 5, 512) -> (N, 8, 10, 512)
            resblock_1 = tf_utils.res_block_v2(
                x=h0_reshape,
                k=self.dims[1],
                filter_size=3,
                _ops=self._ops,
                norm_='batch',
                resample='up',
                name='res_block_1',
                logger=self.logger if is_train is True else None)

            # (N, 8, 10, 512) -> (N, 16, 20, 256)
            resblock_2 = tf_utils.res_block_v2(
                x=resblock_1,
                k=self.dims[2],
                filter_size=3,
                _ops=self._ops,
                norm_='batch',
                resample='up',
                name='res_block_2',
                logger=self.logger if is_train is True else None)

            # (N, 16, 20, 256) -> (N, 15, 20, 256)
            resblock_2_split, _ = tf.split(resblock_2, [15, 1],
                                           axis=1,
                                           name='resblock_2_split')
            tf_utils.print_activations(
                resblock_2_split,
                logger=self.logger if is_train is True else None)

            # (N, 15, 20, 256) -> (N, 30, 40, 128)
            resblock_3 = tf_utils.res_block_v2(
                x=resblock_2_split,
                k=self.dims[3],
                filter_size=3,
                _ops=self._ops,
                norm_='batch',
                resample='up',
                name='res_block_3',
                logger=self.logger if is_train is True else None)

            # (N, 30, 40, 128) -> (N, 60, 80, 64)
            resblock_4 = tf_utils.res_block_v2(
                x=resblock_3,
                k=self.dims[4],
                filter_size=3,
                _ops=self._ops,
                norm_='batch',
                resample='up',
                name='res_block_4',
                logger=self.logger if is_train is True else None)

            # (N, 60, 80, 64) -> (N, 120, 160, 64)
            resblock_5 = tf_utils.res_block_v2(
                x=resblock_4,
                k=self.dims[5],
                filter_size=3,
                _ops=self._ops,
                norm_='batch',
                resample='up',
                name='res_block_5',
                logger=self.logger if is_train is True else None)

            norm_5 = tf_utils.norm(
                resblock_5,
                name='norm_5',
                _type='batch',
                _ops=self._ops,
                is_train=is_train,
                logger=self.logger if is_train is True else None)

            relu_5 = tf_utils.relu(
                norm_5,
                name='relu_5',
                logger=self.logger if is_train is True else None)

            # (N, 120, 160, 64) -> (N, 120, 160, 3)
            conv_6 = tf_utils.conv2d(
                relu_5,
                output_dim=self.dims[6],
                k_h=3,
                k_w=3,
                d_h=1,
                d_w=1,
                name='conv_6',
                logger=self.logger if is_train is True else None)

            output = tf_utils.tanh(
                conv_6,
                name='output',
                logger=self.logger if is_train is True else None)

        # Set reuse=True for next call
        self.reuse = True
        self.variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
                                           scope=self.name)

        return output
Exemple #12
0
    def __call__(self, x):
        with tf.variable_scope(self.name, reuse=self.reuse):
            tf_utils.print_activations(x)

            # (300, 200) -> (150, 100)
            e0_conv2d = tf_utils.conv2d(x, self.gen_c[0], name='e0_conv2d')
            e0_lrelu = tf_utils.lrelu(e0_conv2d, name='e0_lrelu')

            # (150, 100) -> (75, 50)
            e1_conv2d = tf_utils.conv2d(e0_lrelu,
                                        self.gen_c[1],
                                        name='e1_conv2d')
            e1_batchnorm = tf_utils.batch_norm(e1_conv2d,
                                               name='e1_batchnorm',
                                               _ops=self._ops)
            e1_lrelu = tf_utils.lrelu(e1_batchnorm, name='e1_lrelu')

            # (75, 50) -> (38, 25)
            e2_conv2d = tf_utils.conv2d(e1_lrelu,
                                        self.gen_c[2],
                                        name='e2_conv2d')
            e2_batchnorm = tf_utils.batch_norm(e2_conv2d,
                                               name='e2_batchnorm',
                                               _ops=self._ops)
            e2_lrelu = tf_utils.lrelu(e2_batchnorm, name='e2_lrelu')

            # (38, 25) -> (19, 13)
            e3_conv2d = tf_utils.conv2d(e2_lrelu,
                                        self.gen_c[3],
                                        name='e3_conv2d')
            e3_batchnorm = tf_utils.batch_norm(e3_conv2d,
                                               name='e3_batchnorm',
                                               _ops=self._ops)
            e3_lrelu = tf_utils.lrelu(e3_batchnorm, name='e3_lrelu')

            # (19, 13) -> (10, 7)
            e4_conv2d = tf_utils.conv2d(e3_lrelu,
                                        self.gen_c[4],
                                        name='e4_conv2d')
            e4_batchnorm = tf_utils.batch_norm(e4_conv2d,
                                               name='e4_batchnorm',
                                               _ops=self._ops)
            e4_lrelu = tf_utils.lrelu(e4_batchnorm, name='e4_lrelu')

            # (10, 7) -> (5, 4)
            e5_conv2d = tf_utils.conv2d(e4_lrelu,
                                        self.gen_c[5],
                                        name='e5_conv2d')
            e5_batchnorm = tf_utils.batch_norm(e5_conv2d,
                                               name='e5_batchnorm',
                                               _ops=self._ops)
            e5_lrelu = tf_utils.lrelu(e5_batchnorm, name='e5_lrelu')

            # (5, 4) -> (3, 2)
            e6_conv2d = tf_utils.conv2d(e5_lrelu,
                                        self.gen_c[6],
                                        name='e6_conv2d')
            e6_batchnorm = tf_utils.batch_norm(e6_conv2d,
                                               name='e6_batchnorm',
                                               _ops=self._ops)
            e6_lrelu = tf_utils.lrelu(e6_batchnorm, name='e6_lrelu')

            # (3, 2) -> (2, 1)
            e7_conv2d = tf_utils.conv2d(e6_lrelu,
                                        self.gen_c[7],
                                        name='e7_conv2d')
            e7_batchnorm = tf_utils.batch_norm(e7_conv2d,
                                               name='e7_batchnorm',
                                               _ops=self._ops)
            e7_relu = tf_utils.relu(e7_batchnorm, name='e7_relu')

            # (2, 1) -> (4, 2)
            d0_deconv = tf_utils.deconv2d(e7_relu,
                                          self.gen_c[8],
                                          name='d0_deconv2d')
            shapeA = e6_conv2d.get_shape().as_list()[1]
            shapeB = d0_deconv.get_shape().as_list()[1] - e6_conv2d.get_shape(
            ).as_list()[1]
            # (4, 2) -> (3, 2)
            d0_split, _ = tf.split(d0_deconv, [shapeA, shapeB],
                                   axis=1,
                                   name='d0_split')
            tf_utils.print_activations(d0_split)
            d0_batchnorm = tf_utils.batch_norm(d0_split,
                                               name='d0_batchnorm',
                                               _ops=self._ops)
            d0_drop = tf.nn.dropout(d0_batchnorm,
                                    keep_prob=0.5,
                                    name='d0_dropout')
            d0_concat = tf.concat([d0_drop, e6_batchnorm],
                                  axis=3,
                                  name='d0_concat')
            d0_relu = tf_utils.relu(d0_concat, name='d0_relu')

            # (3, 2) -> (6, 4)
            d1_deconv = tf_utils.deconv2d(d0_relu,
                                          self.gen_c[9],
                                          name='d1_deconv2d')
            # (6, 4) -> (5, 4)
            shapeA = e5_batchnorm.get_shape().as_list()[1]
            shapeB = d1_deconv.get_shape().as_list(
            )[1] - e5_batchnorm.get_shape().as_list()[1]
            d1_split, _ = tf.split(d1_deconv, [shapeA, shapeB],
                                   axis=1,
                                   name='d1_split')
            tf_utils.print_activations(d1_split)
            d1_batchnorm = tf_utils.batch_norm(d1_split,
                                               name='d1_batchnorm',
                                               _ops=self._ops)
            d1_drop = tf.nn.dropout(d1_batchnorm,
                                    keep_prob=0.5,
                                    name='d1_dropout')
            d1_concat = tf.concat([d1_drop, e5_batchnorm],
                                  axis=3,
                                  name='d1_concat')
            d1_relu = tf_utils.relu(d1_concat, name='d1_relu')

            # (5, 4) -> (10, 8)
            d2_deconv = tf_utils.deconv2d(d1_relu,
                                          self.gen_c[10],
                                          name='d2_deconv2d')
            # (10, 8) -> (10, 7)
            shapeA = e4_batchnorm.get_shape().as_list()[2]
            shapeB = d2_deconv.get_shape().as_list(
            )[2] - e4_batchnorm.get_shape().as_list()[2]
            d2_split, _ = tf.split(d2_deconv, [shapeA, shapeB],
                                   axis=2,
                                   name='d2_split')
            tf_utils.print_activations(d2_split)
            d2_batchnorm = tf_utils.batch_norm(d2_split,
                                               name='d2_batchnorm',
                                               _ops=self._ops)
            d2_drop = tf.nn.dropout(d2_batchnorm,
                                    keep_prob=0.5,
                                    name='d2_dropout')
            d2_concat = tf.concat([d2_drop, e4_batchnorm],
                                  axis=3,
                                  name='d2_concat')
            d2_relu = tf_utils.relu(d2_concat, name='d2_relu')

            # (10, 7) -> (20, 14)
            d3_deconv = tf_utils.deconv2d(d2_relu,
                                          self.gen_c[11],
                                          name='d3_deconv2d')
            # (20, 14) -> (19, 14)
            shapeA = e3_batchnorm.get_shape().as_list()[1]
            shapeB = d3_deconv.get_shape().as_list(
            )[1] - e3_batchnorm.get_shape().as_list()[1]
            d3_split_1, _ = tf.split(d3_deconv, [shapeA, shapeB],
                                     axis=1,
                                     name='d3_split_1')
            tf_utils.print_activations(d3_split_1)
            # (19, 14) -> (19, 13)
            shapeA = e3_batchnorm.get_shape().as_list()[2]
            shapeB = d3_split_1.get_shape().as_list(
            )[2] - e3_batchnorm.get_shape().as_list()[2]
            d3_split_2, _ = tf.split(d3_split_1, [shapeA, shapeB],
                                     axis=2,
                                     name='d3_split_2')
            tf_utils.print_activations(d3_split_2)
            d3_batchnorm = tf_utils.batch_norm(d3_split_2,
                                               name='d3_batchnorm',
                                               _ops=self._ops)
            d3_concat = tf.concat([d3_batchnorm, e3_batchnorm],
                                  axis=3,
                                  name='d3_concat')
            d3_relu = tf_utils.relu(d3_concat, name='d3_relu')

            # (19, 13) -> (38, 26)
            d4_deconv = tf_utils.deconv2d(d3_relu,
                                          self.gen_c[12],
                                          name='d4_deconv2d')
            # (38, 26) -> (38, 25)
            shapeA = e2_batchnorm.get_shape().as_list()[2]
            shapeB = d4_deconv.get_shape().as_list(
            )[2] - e2_batchnorm.get_shape().as_list()[2]
            d4_split, _ = tf.split(d4_deconv, [shapeA, shapeB],
                                   axis=2,
                                   name='d4_split')
            tf_utils.print_activations(d4_split)
            d4_batchnorm = tf_utils.batch_norm(d4_split,
                                               name='d4_batchnorm',
                                               _ops=self._ops)
            d4_concat = tf.concat([d4_batchnorm, e2_batchnorm],
                                  axis=3,
                                  name='d4_concat')
            d4_relu = tf_utils.relu(d4_concat, name='d4_relu')

            # (38, 25) -> (76, 50)
            d5_deconv = tf_utils.deconv2d(d4_relu,
                                          self.gen_c[13],
                                          name='d5_deconv2d')
            # (76, 50) -> (75, 50)
            shapeA = e1_batchnorm.get_shape().as_list()[1]
            shapeB = d5_deconv.get_shape().as_list(
            )[1] - e1_batchnorm.get_shape().as_list()[1]
            d5_split, _ = tf.split(d5_deconv, [shapeA, shapeB],
                                   axis=1,
                                   name='d5_split')
            tf_utils.print_activations(d5_split)
            d5_batchnorm = tf_utils.batch_norm(d5_split,
                                               name='d5_batchnorm',
                                               _ops=self._ops)
            d5_concat = tf.concat([d5_batchnorm, e1_batchnorm],
                                  axis=3,
                                  name='d5_concat')
            d5_relu = tf_utils.relu(d5_concat, name='d5_relu')

            # (75, 50) -> (150, 100)
            d6_deconv = tf_utils.deconv2d(d5_relu,
                                          self.gen_c[14],
                                          name='d6_deconv2d')
            d6_batchnorm = tf_utils.batch_norm(d6_deconv,
                                               name='d6_batchnorm',
                                               _ops=self._ops)
            d6_concat = tf.concat([d6_batchnorm, e0_conv2d],
                                  axis=3,
                                  name='d6_concat')
            d6_relu = tf_utils.relu(d6_concat, name='d6_relu')

            # (150, 100) -> (300, 200)
            d7_deconv = tf_utils.deconv2d(d6_relu,
                                          self.gen_c[15],
                                          name='d7_deconv2d')
            output = tf_utils.tanh(d7_deconv, name='output_tanh')

            # set reuse=True for next call
            self.reuse = True
            self.variables = tf.get_collection(
                tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.name)

            return output