def __init__(self, prev_layer, name='flatten'):
        super(FlattenLayer, self).__init__(prev_layer=prev_layer, name=name)

        _out = flatten_reshape(self.inputs, name=name)
        self.n_units = int(_out.get_shape()[-1])

        logging.info("FlattenLayer %s: %d" % (self.name, self.n_units))

        self.outputs = _out

        self._add_layers(self.outputs)
Exemple #2
0
    def __init__(
        self,
        prev_layer,
        theta_layer,
        out_size=None,
        name='spatial_trans_2d_affine',
    ):

        super(SpatialTransformer2dAffineLayer,
              self).__init__(prev_layer=[prev_layer, theta_layer], name=name)

        self.inputs = prev_layer.outputs  # Do not remove
        self.theta_layer = theta_layer

        if out_size is None:
            out_size = [40, 40]

        logging.info(
            "SpatialTransformer2dAffineLayer %s: in_size: %s out_size: %s" %
            (self.name, self.inputs.get_shape().as_list(), out_size))

        with tf.variable_scope(name) as vs:

            # 1. make the localisation network to [batch, 6] via Flatten and Dense.
            if self.theta_layer.outputs.get_shape().ndims > 2:
                self.theta_layer.outputs = flatten_reshape(
                    self.theta_layer.outputs, 'flatten')

            # 2. To initialize the network to the identity transform init.
            # 2.1 W
            n_in = int(self.theta_layer.outputs.get_shape()[-1])
            shape = (n_in, 6)

            W = tf.get_variable(name='W',
                                initializer=tf.zeros(shape),
                                dtype=LayersConfig.tf_dtype)
            # 2.2 b

            identity = tf.constant(
                np.array([[1., 0, 0], [0, 1., 0]]).astype('float32').flatten())

            b = tf.get_variable(name='b',
                                initializer=identity,
                                dtype=LayersConfig.tf_dtype)
            # 2.3 transformation matrix

            self.theta = tf.nn.tanh(tf.matmul(self.theta_layer.outputs, W) + b)
            # 3. Spatial Transformer Sampling
            # 3.1 transformation

            self.outputs = transformer(self.inputs,
                                       self.theta,
                                       out_size=out_size)

            # 3.2 automatically set batch_size and channels
            # e.g. [?, 40, 40, ?] --> [64, 40, 40, 1] or [64, 20, 20, 4]/ Hao Dong
            #
            fixed_batch_size = self.inputs.get_shape().with_rank_at_least(1)[0]

            if fixed_batch_size.value:
                batch_size = fixed_batch_size.value

            else:
                batch_size = array_ops.shape(self.inputs)[0]

            n_channels = self.inputs.get_shape().as_list()[-1]
            # logging.info(self.outputs)
            self.outputs = tf.reshape(
                self.outputs,
                shape=[batch_size, out_size[0], out_size[1], n_channels])
            # logging.info(self.outputs)
            # exit()
            # 4. Get all parameters
            variables = tf.get_collection(TF_GRAPHKEYS_VARIABLES,
                                          scope=vs.name)

        # # theta_layer
        # self._add_layers(theta_layer.all_layers)
        # self._add_params(theta_layer.all_params)
        # self.all_drop.update(theta_layer.all_drop)

        self._add_layers(self.outputs)
        self._add_params(variables)
Exemple #3
0
 def forward(self, inputs):
     outputs = flatten_reshape(inputs, name=self.name)
     return outputs
Exemple #4
0
 def forward(self, inputs):
     outputs = flatten_reshape(inputs, name=self.name)
     return outputs