def test2():
    # A = numpy.array([[1, 4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12]])
    # A = numpy.arange(12).reshape([4,3]) + 1
    A = numpy.arange(1000).reshape([10, 10, 10])+1
    (ans1, ans2) = dta(tensor.tensor(A), [2, 2, 2])
    print ans1
    for i in range(0, len(ans2)):
        print "{0} th array\n {1}".format(i, ans2[i])

    print ans1.totensor()
def test2():
    # A = numpy.array([[1, 4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12]])
    # A = numpy.arange(12).reshape([4,3]) + 1
    A = numpy.arange(1000).reshape([10, 10, 10]) + 1
    (ans1, ans2) = dta(tensor.tensor(A), [2, 2, 2])
    print ans1
    for i in range(0, len(ans2)):
        print "{0} th array\n {1}".format(i, ans2[i])

    print ans1.totensor()
Exemple #3
0
def sparse(data):
    total = 1
    # print data.shape[0]
    shape = data.shape
    for i in range(len(shape)):
        total *= shape[i]

    # print total
    # print type(data), data
    ts = tensor(data, data.shape)

    # print 'a'
    ts2 = ts.tosptensor()

    print "非零元素个数: ", ts2.nnz()

    print "稀疏度: ", ts2.nnz()/total
def test1():
    A = ttensor.ttensor(tensor.tenrands([2, 3, 4]), [numpy.random.random([10, 2]), numpy.random.random([30, 3]), numpy.random.random([40, 4])]).totensor()
    [a, b] = dta(A, [1, 2, 3])
    print a
    print b
    Core = numpy.arange(24).reshape([2, 3, 4])
    # Core = numpy.array([[1,3,5],[2,4,6]] , [[7,9,11],[8,10,12]])
    u1 = numpy.array([[1, 2], [3, 4]])
    u2 = numpy.array([[0, 1, 0], [1, 0, 1], [1, 1, 1]])
    u3 = numpy.array([[1, 1, 1, 1], [1, 2, 3, 4], [1, 1, 1, 1]])
    tt = ttensor.ttensor(tensor.tensor(Core), [u1, u2, u3])

    print tt
    [a, b] = dta(tt.totensor(), [1, 2, 3])
    print a
    print a.totensor()
    print b
Exemple #5
0
def sparse(data):
    total = 1
    # print data.shape[0]
    shape = data.shape
    for i in range(len(shape)):
        total *= shape[i]

    # print total
    # print type(data), data
    ts = tensor(data, data.shape)

    # print 'a'
    ts2 = ts.tosptensor()

    print "非零元素个数: ", ts2.nnz()

    print "稀疏度: ", ts2.nnz() / total
def test1():
    A = ttensor.ttensor(tensor.tenrands([2, 3, 4]), [
        numpy.random.random([10, 2]),
        numpy.random.random([30, 3]),
        numpy.random.random([40, 4])
    ]).totensor()
    [a, b] = dta(A, [1, 2, 3])
    print a
    print b
    Core = numpy.arange(24).reshape([2, 3, 4])
    # Core = numpy.array([[1,3,5],[2,4,6]] , [[7,9,11],[8,10,12]])
    u1 = numpy.array([[1, 2], [3, 4]])
    u2 = numpy.array([[0, 1, 0], [1, 0, 1], [1, 1, 1]])
    u3 = numpy.array([[1, 1, 1, 1], [1, 2, 3, 4], [1, 1, 1, 1]])
    tt = ttensor.ttensor(tensor.tensor(Core), [u1, u2, u3])

    print tt
    [a, b] = dta(tt.totensor(), [1, 2, 3])
    print a
    print a.totensor()
    print b
Exemple #7
0
                                        poi_num)

        residual1 = delta_tensor_norm(res1, check_tensor)

        tensor_stream_res = tensor_stream(data, user_num, poi_num, 10)
        print "张量流长度:" + str(len(tensor_stream_res))

        # def dta(new_tensor, rank, variance_matrix_list=None, alpha=None):
        #     return reconstruct_tensor, new_variance_matrix_list

        reconstruct_tensor = None
        variance_matrix_list = None
        for tensor_data in tensor_stream_res[:-2]:
            # print "data:", sparsity(tensor_data)
            reconstruct_tensor, variance_matrix_list = dta(
                tensor.tensor(numpy.array(tensor_data)), (4, 2, 200),
                variance_matrix_list)
            # print sparsity(reconstruct_tensor.totensor().tondarray().tolist())

        res2 = reconstruct_tensor.totensor().tondarray().tolist()
        print res2

        nor_res = dta_normalize_tensor(res2, user_num, time_num, poi_num)
        print "最终张量:", sparsity(res2)
        print nor_res

        # check_tensor = get_check_tensor(check_data, user_num, time_num, poi_num)
        # print check_tensor
        residual2 = delta_tensor_norm(nor_res, check_tensor)

        statistic_res = get_check_tensor(data, user_num, time_num, poi_num)
        check_tensor = get_check_tensor(check_data, user_num, time_num, poi_num)

        residual1 = delta_tensor_norm(res1, check_tensor)

        tensor_stream_res = tensor_stream(data, user_num, poi_num, 10)
        print "张量流长度:" + str(len(tensor_stream_res))

        # def dta(new_tensor, rank, variance_matrix_list=None, alpha=None):
        #     return reconstruct_tensor, new_variance_matrix_list

        reconstruct_tensor = None
        variance_matrix_list = None
        for tensor_data in tensor_stream_res[:-2]:
            # print "data:", sparsity(tensor_data)
            reconstruct_tensor, variance_matrix_list = dta(
                tensor.tensor(numpy.array(tensor_data)), (4, 2, 200), variance_matrix_list
            )
            # print sparsity(reconstruct_tensor.totensor().tondarray().tolist())

        res2 = reconstruct_tensor.totensor().tondarray().tolist()
        print res2

        nor_res = dta_normalize_tensor(res2, user_num, time_num, poi_num)
        print "最终张量:", sparsity(res2)
        print nor_res

        # check_tensor = get_check_tensor(check_data, user_num, time_num, poi_num)
        # print check_tensor
        residual2 = delta_tensor_norm(nor_res, check_tensor)

        statistic_res = get_check_tensor(data, user_num, time_num, poi_num)
    user_num = len(axis_users)
    poi_num = len(axis_pois)

    # print data

    tensor_stream_res = tensor_stream(data, user_num, poi_num, 2)
    print len(tensor_stream_res)

    # def dta(new_tensor, rank, variance_matrix_list=None, alpha=None):
    #     return reconstruct_tensor, new_variance_matrix_list

    reconstruct_tensor = None
    variance_matrix_list = None
    for tensor_data in tensor_stream_res:
        # print "data:", sparsity(tensor_data)
        reconstruct_tensor, variance_matrix_list = dta(tensor.tensor(numpy.array(tensor_data)), (4, 2, 10), variance_matrix_list)
        # print sparsity(reconstruct_tensor.totensor().tondarray().tolist())

    res = reconstruct_tensor.totensor().tondarray().tolist()
    # print res
    print "最终张量:", sparsity(res)

    nor_res = dta_normalize_tensor(res, user_num, time_num, poi_num)
    check_tensor = get_check_tensor(check_data, user_num, time_num, poi_num)
    # print check_tensor
    residual = delta_tensor_norm(nor_res, check_tensor)

    print residual
    print nor_res
    print check_data
    print sparsity(check_tensor)