def compute_sparse_lookup(
        charges: List[BaseCharge], flows: Union[np.ndarray, List[bool]],
        target_charges: BaseCharge
) -> Tuple[np.ndarray, BaseCharge, np.ndarray]:
    """
  Compute lookup table for how dense index positions map 
  to sparse index positions, treating only those elements as non-zero
  whose charges fuse to `target_charges`.
  Args:
    charges: List of `BaseCharge` objects.
    flows: A list of `bool`; the flow directions.
    target_charges: A `BaseCharge`; the target charges for which 
      the fusion of `charges` is non-zero.
  Returns:
    lookup: An np.ndarray of positive numbers between `0` and
      `len(unique_charges)`. The position of values `n` in `lookup` 
      are positions with charge values `unique_charges[n]`.
    unique_charges: The unique charges of fusion of `charges`
    label_to_unique: The integer labels of the unique charges.
  """

    fused_charges = fuse_charges(charges, flows)
    unique_charges, inverse = unique(fused_charges.charges,
                                     return_inverse=True)
    _, label_to_unique, _ = intersect(unique_charges,
                                      target_charges.charges,
                                      return_indices=True)
    # _, label_to_unique, _ = unique_charges.intersect(
    #     target_charges, return_indices=True)
    tmp = np.full(unique_charges.shape[0],
                  fill_value=-1,
                  dtype=charges[0].label_dtype)
    obj = charges[0].__new__(type(charges[0]))
    obj.__init__(charges=unique_charges,
                 charge_labels=None,
                 charge_types=charges[0].charge_types)

    tmp[label_to_unique] = label_to_unique
    lookup = tmp[inverse]
    lookup = lookup[lookup >= 0]

    return lookup, obj, np.sort(label_to_unique)
Exemple #2
0
  def __getitem__(self, n: Union[List[int], np.ndarray, int]) -> "BaseCharge":
    """
    Return the charge-element at position `n`, wrapped into a `BaseCharge`
    object.
    Args:
      n: An integer or `np.ndarray`.
    Returns:
      BaseCharge: The charges at `n`.
    """

    if isinstance(n, (np.integer, int)):
      n = np.asarray([n])
    n = np.asarray(n)
    obj = self.__new__(type(self))
    if self._unique_charges is not None:
      labels = self.charge_labels[n]
      unique_labels, new_labels = unique(labels, return_inverse=True)
      unique_charges = self.unique_charges[unique_labels, :]
      obj.__init__(unique_charges, new_labels, self.charge_types)
      return obj
    obj.__init__(
        self._charges[n, :], charge_labels=None, charge_types=self.charge_types)
    return obj
def test_find_transposed_diagonal_sparse_blocks(num_charges, order, D):
    order = list(order)
    num_legs = len(order)
    np.random.seed(10)
    np_charges = [
        np.random.randint(-5, 5, (D, num_charges), dtype=np.int16)
        for _ in range(num_legs)
    ]
    tr_charge_list = []
    charge_list = []
    for c in range(num_charges):

        tr_charge_list.append(
            fuse_ndarrays(
                [np_charges[order[n]][:, c] for n in range(num_legs)]))
        charge_list.append(
            fuse_ndarrays([np_charges[n][:, c] for n in range(num_legs)]))

    tr_fused = np.stack(tr_charge_list, axis=1)
    fused = np.stack(charge_list, axis=1)

    dims = [c.shape[0] for c in np_charges]
    strides = _get_strides(dims)
    transposed_linear_positions = fuse_stride_arrays(
        dims, [strides[o] for o in order])
    left_charges = np.stack([
        fuse_ndarrays(
            [np_charges[order[n]][:, c] for n in range(num_legs // 2)])
        for c in range(num_charges)
    ],
                            axis=1)
    right_charges = np.stack([
        fuse_ndarrays([
            np_charges[order[n]][:, c] for n in range(num_legs // 2, num_legs)
        ]) for c in range(num_charges)
    ],
                             axis=1)
    #pylint: disable=no-member
    mask = np.logical_and.reduce(fused == np.zeros((1, num_charges)), axis=1)
    nz = np.nonzero(mask)[0]
    dense_to_sparse = np.empty(len(mask), dtype=np.int64)
    dense_to_sparse[mask] = np.arange(len(nz))
    #pylint: disable=no-member
    tr_mask = np.logical_and.reduce(tr_fused == np.zeros((1, num_charges)),
                                    axis=1)
    tr_nz = np.nonzero(tr_mask)[0]
    tr_linear_locs = transposed_linear_positions[tr_nz]
    # pylint: disable=no-member
    left_inds, _ = np.divmod(tr_nz, right_charges.shape[0])
    left = left_charges[left_inds, :]
    unique_left = unique(left)
    blocks = []
    for n in range(unique_left.shape[0]):
        ul = unique_left[n, :][None, :]
        #pylint: disable=no-member
        blocks.append(dense_to_sparse[tr_linear_locs[np.nonzero(
            np.logical_and.reduce(left == ul, axis=1))[0]]])

    charges = [
        BaseCharge(c, charge_types=[U1Charge] * num_charges)
        for c in np_charges
    ]
    flows = [False] * num_legs
    bs, cs, ss = _find_transposed_diagonal_sparse_blocks(
        charges, flows, tr_partition=num_legs // 2, order=order)
    np.testing.assert_allclose(cs.charges, unique_left)
    for b1, b2 in zip(blocks, bs):
        assert np.all(b1 == b2)

    assert np.sum(np.prod(ss, axis=0)) == np.sum([len(b) for b in bs])
    np.testing.assert_allclose(unique_left, cs.charges)
def reduce_charges(charges: List[BaseCharge],
                   flows: Union[np.ndarray, List[bool]],
                   target_charges: np.ndarray,
                   return_locations: Optional[bool] = False,
                   strides: Optional[np.ndarray] = None) -> Any:
    """
  Add quantum numbers arising from combining two or more charges into a
  single index, keeping only the quantum numbers that appear in 
  `target_charges`. Equilvalent to using "combine_charges" followed 
  by "reduce", but is generally much more efficient.
  Args:
    charges: List of `BaseCharge`, one for each leg of a 
      tensor. 
    flows: A list of bool, one for each leg of a tensor.
      with values `False` or `True` denoting inflowing and 
      outflowing charge direction, respectively.
    target_charges: n-by-D array of charges which should be kept,
      with `n` the number of symmetries.
    return_locations: If `True` return the location of the kept
      values of the fused charges
    strides: Index strides with which to compute the
      retured locations of the kept elements. Defaults to trivial strides 
      (based on row major order).
  Returns:
    BaseCharge: the fused index after reduction.
    np.ndarray: Locations of the fused BaseCharge charges that were kept.
  """

    tensor_dims = [len(c) for c in charges]

    if len(charges) == 1:
        # reduce single index
        if strides is None:
            strides = np.array([1], dtype=SIZE_T)
        return charges[0].dual(flows[0]).reduce(
            target_charges,
            return_locations=return_locations,
            strides=strides[0])

    # find size-balanced partition of charges
    partition = _find_best_partition(tensor_dims)

    # compute quantum numbers for each partition
    left_ind = fuse_charges(charges[:partition], flows[:partition])
    right_ind = fuse_charges(charges[partition:], flows[partition:])

    # compute combined qnums
    comb_qnums = fuse_ndarray_charges(left_ind.unique_charges,
                                      right_ind.unique_charges,
                                      charges[0].charge_types)
    #special case of empty charges
    #pylint: disable=unsubscriptable-object
    if (comb_qnums.shape[0] == 0) or (len(left_ind.charge_labels)
                                      == 0) or (len(right_ind.charge_labels)
                                                == 0):
        obj = charges[0].__new__(type(charges[0]))
        obj.__init__(
            np.empty((0, charges[0].num_symmetries), dtype=charges[0].dtype),
            np.empty(0, dtype=charges[0].label_dtype), charges[0].charge_types)
        if return_locations:
            return obj, np.empty(0, dtype=SIZE_T)
        return obj

    unique_comb_qnums, comb_labels = unique(comb_qnums, return_inverse=True)
    num_unique = unique_comb_qnums.shape[0]

    # intersect combined qnums and target_charges
    reduced_qnums, label_to_unique, _ = intersect(unique_comb_qnums,
                                                  target_charges,
                                                  axis=0,
                                                  return_indices=True)
    map_to_kept = -np.ones(num_unique, dtype=charges[0].label_dtype)
    map_to_kept[label_to_unique] = np.arange(len(label_to_unique))
    # new_comb_labels is a matrix of shape
    # (left_ind.num_unique, right_ind.num_unique)
    # each row new_comb_labels[n,:] contains integers values.
    # Positions where values > 0
    # denote labels of right-charges that are kept.
    new_comb_labels = map_to_kept[comb_labels].reshape(
        [left_ind.num_unique, right_ind.num_unique])
    reduced_rows = [0] * left_ind.num_unique

    for n in range(left_ind.num_unique):
        temp_label = new_comb_labels[n, right_ind.charge_labels]
        reduced_rows[n] = temp_label[temp_label >= 0]

    reduced_labels = np.concatenate(
        [reduced_rows[n] for n in left_ind.charge_labels])
    obj = charges[0].__new__(type(charges[0]))
    obj.__init__(reduced_qnums, reduced_labels, charges[0].charge_types)

    if return_locations:
        row_locs = [0] * left_ind.num_unique
        if strides is not None:
            # computed locations based on non-trivial strides
            row_pos = fuse_stride_arrays(tensor_dims[:partition],
                                         strides[:partition])
            col_pos = fuse_stride_arrays(tensor_dims[partition:],
                                         strides[partition:])
        for n in range(left_ind.num_unique):
            temp_label = new_comb_labels[n, right_ind.charge_labels]
            temp_keep = temp_label >= 0
            if strides is not None:
                row_locs[n] = col_pos[temp_keep]
            else:
                row_locs[n] = np.where(temp_keep)[0]

        if strides is not None:
            reduced_locs = np.concatenate([
                row_pos[n] + row_locs[left_ind.charge_labels[n]]
                for n in range(left_ind.dim)
            ])
        else:
            reduced_locs = np.concatenate([
                n * right_ind.dim + row_locs[left_ind.charge_labels[n]]
                for n in range(left_ind.dim)
            ])
        return obj, reduced_locs

    return obj
Exemple #5
0
 def charge_labels(self):
     if self._charge_labels is None:
         self._unique_charges, self._charge_labels = unique(
             self.charges, return_inverse=True)
         self._charges = None
     return self._charge_labels
Exemple #6
0
    def unique(
            self,  #pylint: disable=inconsistent-return-statements
            return_index: bool = False,
            return_inverse: bool = False,
            return_counts: bool = False) -> Any:
        """
    Compute the unique charges in `BaseCharge`.
    See unique for a more detailed explanation. This function
    does the same but instead of a np.ndarray, it returns the unique
    elements (not neccessarily sorted in standard order) in a `BaseCharge` 
    object.

    Args:
      return_index: If `True`, also return the indices of `self.charges` 
        (along the specified axis,
        if provided, or in the flattened array) that result in the unique array.
      return_inverse: If `True`, also return the indices of the unique array 
        (for the specified
        axis, if provided) that can be used to reconstruct `self.charges`.
      return_counts: If `True`, also return the number of times each unique 
        item appears in `self.charges`.

    Returns:
      BaseCharge: The sorted unique values.
      np.ndarray: The indices of the first occurrences of the unique values 
        in the original array. Only provided if `return_index` is True.
      np.ndarray: The indices to reconstruct the original array from the
        unique array. Only provided if `return_inverse` is True.
      np.ndarray: The number of times each of the unique values comes up in the
        original array. Only provided if `return_counts` is True.      
    """

        obj = self.__new__(type(self))
        if self._charges is not None:
            tmp = unique(self._charges,
                         return_index=return_index,
                         return_inverse=return_inverse,
                         return_counts=return_counts)

            if any([return_index, return_inverse, return_counts]):
                unique_charges = tmp[0]
                obj.__init__(charges=unique_charges,
                             charge_labels=np.arange(unique_charges.shape[0],
                                                     dtype=self.label_dtype),
                             charge_types=self.charge_types)
                tmp[0] = obj
            else:
                obj.__init__(charges=tmp,
                             charge_labels=np.arange(tmp.shape[0],
                                                     dtype=self.label_dtype),
                             charge_types=self.charge_types)
                tmp = obj
            return tmp

        if self._unique_charges is not None:
            if not return_index:
                obj.__init__(charges=self._unique_charges,
                             charge_labels=np.arange(
                                 self._unique_charges.shape[0],
                                 dtype=self.label_dtype),
                             charge_types=self.charge_types)

                out = [obj]
                if return_inverse:
                    out.append(self._charge_labels)

                if return_counts:
                    _, cnts = unique(self._charge_labels, return_counts=True)
                    out.append(cnts)
                if len(out) > 1:
                    return out
                return out[0]
            tmp = unique(self._charge_labels,
                         return_index=return_index,
                         return_inverse=return_inverse,
                         return_counts=return_counts)

            unique_charges = self._unique_charges[tmp[0], :]
            obj.__init__(charges=unique_charges,
                         charge_labels=np.arange(unique_charges.shape[0],
                                                 dtype=self.label_dtype),
                         charge_types=self.charge_types)
            tmp[0] = obj
            return tmp