Exemple #1
0
 def __init__(self,
              x,
              sf,
              f_pha=[2, 4],
              dcomplex='hilbert',
              cycle=3,
              width=7,
              edges=None,
              n_jobs=-1):
     """Init."""
     _PacObj.__init__(self,
                      f_pha=f_pha,
                      f_amp=[60, 80],
                      dcomplex=dcomplex,
                      cycle=(cycle, 6),
                      width=width)
     # check
     x = np.atleast_2d(x)
     assert x.ndim <= 2, ("`x` input should be an array of shape "
                          "(n_epochs, n_times)")
     self._n_trials = x.shape[0]
     # extract phase and amplitude
     kw = dict(keepfilt=False, edges=edges, n_jobs=n_jobs)
     pha = self.filter(sf, x, 'phase', **kw)
     # compute plv
     self._plv = np.abs(np.exp(1j * pha).mean(1)).squeeze()
     self._sf = sf
Exemple #2
0
 def __init__(self,
              x,
              sf,
              f_pha=[2, 4],
              dcomplex='hilbert',
              cycle=3,
              width=7,
              edges=None,
              n_jobs=-1,
              verbose=None):
     """Init."""
     set_log_level(verbose)
     _PacObj.__init__(self,
                      f_pha=f_pha,
                      f_amp=[60, 80],
                      dcomplex=dcomplex,
                      cycle=(cycle, 6),
                      width=width)
     _PacVisual.__init__(self)
     # check
     x = np.atleast_2d(x)
     assert x.ndim <= 2, ("`x` input should be an array of shape "
                          "(n_epochs, n_times)")
     self._n_trials = x.shape[0]
     logger.info("Inter-Trials Coherence (ITC)")
     logger.info(f"    extracting {len(self.xvec)} phases")
     # extract phase and amplitude
     kw = dict(keepfilt=False, edges=edges, n_jobs=n_jobs)
     pha = self.filter(sf, x, 'phase', **kw)
     # compute itc
     self._itc = np.abs(np.exp(1j * pha).mean(1)).squeeze()
     self._sf = sf
Exemple #3
0
 def __init__(self, x, sf, f_pha=[2, 4], f_amp=[60, 80], n_bins=18,
              dcomplex='hilbert', cycle=(3, 6), width=7, edges=None,
              n_jobs=-1):
     """Init."""
     _PacObj.__init__(self, f_pha=f_pha, f_amp=f_amp, dcomplex=dcomplex,
                      cycle=cycle, width=width)
     # check
     x = np.atleast_2d(x)
     assert x.ndim <= 2, ("`x` input should be an array of shape "
                          "(n_epochs, n_times)")
     assert isinstance(sf, (int, float)), ("`sf` input should be a integer "
                                           "or a float")
     assert all([isinstance(k, (int, float)) for k in f_pha]), (
         "`f_pha` input should be a list of two integers / floats")
     assert all([isinstance(k, (int, float)) for k in f_amp]), (
         "`f_amp` input should be a list of two integers / floats")
     assert isinstance(n_bins, int), "`n_bins` should be an integer"
     logger.info(f"Binning {f_amp}Hz amplitude according to {f_pha}Hz "
                 "phase")
     # extract phase and amplitude
     kw = dict(keepfilt=False, edges=edges, n_jobs=n_jobs)
     pha = self.filter(sf, x, 'phase', **kw)
     amp = self.filter(sf, x, 'amplitude', **kw)
     # binarize amplitude according to phase
     self._amplitude = _kl_hr(pha, amp, n_bins, mean_bins=False).squeeze()
     self.n_bins = n_bins
Exemple #4
0
    def __init__(self,
                 x,
                 sf,
                 cue,
                 times=None,
                 f_pha=[5, 7],
                 f_amp='hres',
                 cycle=(3, 6),
                 n_jobs=-1,
                 verbose=None):
        """Init."""
        set_log_level(verbose)
        # initialize to retrieve filtering methods
        _PacObj.__init__(self,
                         f_pha=f_pha,
                         f_amp=f_amp,
                         dcomplex='hilbert',
                         cycle=cycle)
        _PacVisual.__init__(self)
        logger.info("PeakLockedTF object defined")
        # inputs checking
        x = np.atleast_2d(x)
        assert isinstance(x, np.ndarray) and (x.ndim == 2)
        assert isinstance(sf, (int, float))
        assert isinstance(cue, (int, float))
        assert isinstance(f_pha, (list, tuple)) and (len(f_pha) == 2)
        n_epochs, n_times = x.shape

        # manage cur conversion
        if times is None:
            cue = int(cue)
            times = np.arange(n_times)
            logger.info(f"    align on sample cue={cue}")
        else:
            assert isinstance(times, np.ndarray) and (len(times) == n_times)
            cue_time = cue
            cue = np.abs(times - cue).argmin() - 1
            logger.info(f"    align on time-point={cue_time} (sample={cue})")
        self.cue, self._times = cue, times

        # extract phase and amplitudes
        logger.info(f"    extract phase and amplitudes "
                    f"(n_amps={len(self.yvec)})")
        kw = dict(keepfilt=False, n_jobs=n_jobs)
        pha = self.filter(sf, x, 'phase', n_jobs=n_jobs, keepfilt=True)
        amp = self.filter(sf, x, 'amplitude', n_jobs=n_jobs)
        self._pha, self._amp = pha, amp**2

        # peak detection
        logger.info(f"    running peak detection around sample={cue}")
        self.shifts = self._peak_detection(self._pha.squeeze(), cue)

        # realign phases and amplitudes
        logger.info(f"    realign the {n_epochs} phases and amplitudes")
        self.amp_a = self._shift_signals(self._amp, self.shifts, fill_with=0.)
        self.pha_a = self._shift_signals(self._pha, self.shifts, fill_with=0.)