def mpusim_fully_connected(inputs, units, activation=None, use_bias=True, kernel_initializer=None, bias_initializer=tf.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, activations_datatype_size_byte=1, weights_datatype_size_byte=1, results_datatype_size_byte=4, systolic_array_height=256, systolic_array_width=256, activation_fifo_depth=8, accumulator_array_height=4096, log_file_output_dir='.', model_name='unnamed'): """ A wrapper around `mpusim_fc`. One difference to maintain backward-compatibility: Default weight initializer is variance_scaling_initializer(2.0). Variable Names: * ``W``: weights of shape [in_dim, out_dim] * ``b``: bias """ if kernel_initializer is None: if get_tf_version_tuple() <= (1, 12): kernel_initializer = tf.contrib.layers.variance_scaling_initializer(2.0) # deprecated else: kernel_initializer = tf.keras.initializers.VarianceScaling(2.0, distribution='untruncated_normal') inputs = batch_flatten(inputs) with rename_get_variable({'kernel': 'W', 'bias': 'b'}): layer = mpusim_fc(units=units, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, activations_datatype_size_byte=activations_datatype_size_byte, weights_datatype_size_byte=weights_datatype_size_byte, results_datatype_size_byte=results_datatype_size_byte, systolic_array_height=systolic_array_height, systolic_array_width=systolic_array_width, activation_fifo_depth=activation_fifo_depth, accumulator_array_height=accumulator_array_height, log_file_output_dir=log_file_output_dir, model_name=model_name, _reuse=tf.get_variable_scope().reuse) ret = layer.apply(inputs, scope=tf.get_variable_scope()) ret = tf.identity(ret, name='output') ret.variables = VariableHolder(W=layer.kernel) if use_bias: ret.variables.b = layer.bias return ret
def mod_conv2d(x, y, fmaps, kernel, demodulate=True, gain=1, use_wscale=True, lrmul=1, fused_modconv=True, eps=1e-8, padding='SAME', name="mod_conv2d"): shape = x.get_shape().as_list() # [n, h, w, c] cin = shape[-1] with tf.variable_scope(name, reuse=tf.AUTO_REUSE): # Get weight w = get_weight([kernel, kernel, cin, fmaps], gain=gain, use_wscale=use_wscale, lrmul=lrmul, name='W') ww = w[tf.newaxis] # introduce minibatch dimension # Modulate s = get_bias( cin, base_std=0, use_wscale=use_wscale, lrmul=lrmul, name='bs') + 1 vh = VariableHolder(W=w, bs=s) s = tf.tile(s[tf.newaxis], [tf.shape(x)[0], 1]) # introduce minibatch dimension if y is not None: y_style, w_style = dense(y, cin, gain=gain, use_wscale=use_wscale, lrmul=lrmul) s = s + y_style vh.Ws = w_style ww = ww * tf.cast(s[:, tf.newaxis, tf.newaxis, :, tf.newaxis], w.dtype) # scale input feature maps # Demodulate if demodulate: d = tf.rsqrt( tf.reduce_sum(tf.square(ww), axis=[1, 2, 3], keepdims=True) + eps) # scaling factor ww = ww * d # Reshape/scale input if fused_modconv: x = tf.reshape(tf.transpose(x, [0, 3, 1, 2]), [1, -1, shape[1], shape[2]]) # [1, n*cin, h, w] w = tf.reshape(tf.transpose(ww, [1, 2, 3, 0, 4]), [kernel, kernel, cin, -1]) # [k, k, cin, n*cout] x = tf.nn.conv2d(x, tf.cast(w, x.dtype), data_format='NCHW', strides=[1, 1, 1, 1], padding=padding) out_shape = x.get_shape().as_list() x = tf.transpose( tf.reshape(x, [-1, fmaps, out_shape[2], out_shape[3]]), [0, 2, 3, 1]) else: x = x * tf.cast(s[:, tf.newaxis, tf.newaxis, :], x.dtype) x = tf.nn.conv2d(x, tf.cast(w, x.dtype), data_format='NHWC', strides=[1, 1, 1, 1], padding=padding) if demodulate: x = x * tf.cast(tf.reshape(d, [-1, 1, 1, fmaps]), x.dtype) ret = tf.identity(x) ret.variables = vh return ret
def Conv(inputs, filters, kernel_size, strides=(1, 1), padding='same', data_format='channels_last', dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initializer=None, bias_initializer=tf.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, split=1, norm=False): """ Similar to `tf.layers.Conv2D`, but with some differences: 1. Default kernel initializer is variance_scaling_initializer(2.0). 2. Default padding is 'same'. 3. Support 'split' argument to do group convolution. Variable Names: * ``W``: weights * ``b``: bias """ if kernel_initializer is None: if get_tf_version_tuple() <= (1, 12): kernel_initializer = tf.contrib.layers.variance_scaling_initializer( 2.0) # deprecated else: kernel_initializer = tf.keras.initializers.VarianceScaling( 2.0, distribution='untruncated_normal') dilation_rate = shape2d(dilation_rate) if True: # group conv implementation data_format = get_data_format(data_format, keras_mode=False) in_shape = inputs.get_shape().as_list() channel_axis = 3 if data_format == 'NHWC' else 1 in_channel = in_shape[channel_axis] assert in_channel is not None, "[Conv2D] Input cannot have unknown channel!" assert in_channel % split == 0 assert kernel_regularizer is None and bias_regularizer is None and activity_regularizer is None, \ "Not supported by group conv or dilated conv!" out_channel = filters assert out_channel % split == 0 assert dilation_rate == [1, 1] or get_tf_version_tuple() >= ( 1, 5), 'TF>=1.5 required for dilated conv.' kernel_shape = shape2d(kernel_size) filter_shape = kernel_shape + [in_channel // split, out_channel] stride = shape4d(strides, data_format=data_format) kwargs = {"data_format": data_format} if get_tf_version_tuple() >= (1, 5): kwargs['dilations'] = shape4d(dilation_rate, data_format=data_format) # matching input dtype (ex. tf.float16) since the default dtype of variable if tf.float32 inputs_dtype = inputs.dtype W = tf.get_variable('parseweigth', filter_shape, dtype=inputs_dtype, initializer=kernel_initializer) if norm: use_bias = False W = tf.reshape(W, kernel_shape + [4, in_channel // 4, out_channel]) W = tf.nn.softmax(W, 2) W = tf.reshape(W, filter_shape) #dynamics = tf.reduce_mean(inputs, 0) #dynamics = tf.transpose(dynamics, [1,2,0]) #dynamics = tf.image.resize_images(dynamics, kernel_shape) #dynamics = tf.expand_dims(dynamics, -1) #W = W + 0.001 * dynamics #tf.random_normal(shape = tf.shape(W), mean = 0.0, stddev = 0.012, dtype = tf.float32) #W = W *tf.random_uniform(shape=W.get_shape().as_list(), minval=0., maxval=2.) if use_bias: b = tf.get_variable('parsebias', [out_channel], dtype=inputs_dtype, initializer=bias_initializer) if split == 1: conv = tf.nn.conv2d(inputs, W, stride, padding.upper(), **kwargs) else: try: conv = tf.nn.conv2d(inputs, W, stride, padding.upper(), **kwargs) except ValueError: log_once( "CUDNN group convolution support is only available with " "https://github.com/tensorflow/tensorflow/pull/25818 . " "Will fall back to a loop-based slow implementation instead!", 'warn') ret = tf.nn.bias_add(conv, b, data_format=data_format) if use_bias else conv if activation is not None: ret = activation(ret) ret = tf.identity(ret, name='output') ret.variables = VariableHolder(W=W) if use_bias: ret.variables.b = b return ret
def mpusim_depthwise_convolution2d(inputs, kernel_size, strides=(1, 1), padding='valid', depth_multiplier=1, data_format='channels_last', activation=None, use_bias=True, depthwise_initializer='glorot_uniform', bias_initializer='zeros', depthwise_regularizer=None, bias_regularizer=None, depthwise_constraint=None, bias_constraint=None, activations_datatype_size_byte=1, weights_datatype_size_byte=1, results_datatype_size_byte=4, systolic_array_height=256, systolic_array_width=256, activation_fifo_depth=8, accumulator_array_height=4096, log_file_output_dir='.', model_name='unnamed'): #depthwise_initializer = initializers.get(depthwise_initializer) #depthwise_regularizer = regularizers.get(depthwise_regularizer) #depthwise_constraint = constraints.get(depthwise_constraint) #bias_initializer = initializers.get(bias_initializer) data_format = get_data_format(data_format, keras_mode=False) input_shape = inputs.get_shape().as_list() strides = shape4d(strides, data_format=data_format) if len(input_shape) < 4: raise ValueError( 'Inputs to `mpusim_depthwise_conv2d` should have rank 4. ' 'Received input shape:', str(input_shape)) if data_format == 'NCHW': raise ValueError('mpusim_depthwise_convolution2d ' 'only supports NHWC data format') else: channel_axis = 3 if input_shape[channel_axis] is None: raise ValueError('The channel dimension of the inputs to ' '`mpusim_depthwise_convolution2d` ' 'should be defined. Found `None`.') input_dim = int(input_shape[channel_axis]) depthwise_kernel_shape = (kernel_size[0], kernel_size[1], input_dim, depth_multiplier) depthwise_kernel = tf.get_variable('W', shape=depthwise_kernel_shape, initializer=depthwise_initializer, regularizer=depthwise_regularizer, constraint=depthwise_constraint) if use_bias: biases = tf.get_variable('b', shape=(input_dim * depth_multiplier, ), initializer=bias_initializer, regularizer=bias_regularizer, constraint=bias_constraint) result = mpusim_depthwise_conv2d( inputs, depthwise_kernel, strides=strides, padding=padding, data_format=data_format, activations_datatype_size_byte=activations_datatype_size_byte, weights_datatype_size_byte=weights_datatype_size_byte, results_datatype_size_byte=results_datatype_size_byte, systolic_array_height=systolic_array_height, systolic_array_width=systolic_array_width, activation_fifo_depth=activation_fifo_depth, accumulator_array_height=accumulator_array_height, log_file_output_dir=log_file_output_dir, model_name=model_name) if use_bias: result = tf.nn.bias_add(result, bias, data_format=data_format) if activation is not None: result = activation(result) result = tf.identity(result, name='output') result.variables = VariableHolder(W=depthwise_kernel) if use_bias: result.variables.b = biases return result
def MaskedConv2D( inputs, filters, kernel_size, strides=(1, 1), padding='same', data_format='channels_last', dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initializer=None, bias_initializer=tf.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, split=1, masking=False): """ A wrapper around `tf.layers.Conv2D`. Some differences to maintain backward-compatibility: 1. Default kernel initializer is variance_scaling_initializer(2.0). 2. Default padding is 'same'. 3. Support 'split' argument to do group conv. Variable Names: * ``W``: weights * ``b``: bias """ if kernel_initializer is None: if get_tf_version_tuple() <= (1, 12): kernel_initializer = tf.contrib.layers.variance_scaling_initializer(2.0) else: kernel_initializer = tf.keras.initializers.VarianceScaling(2.0, distribution='untruncated_normal') dilation_rate = shape2d(dilation_rate) if (masking == False) and (split == 1) and (dilation_rate == [1, 1]): # tf.layers.Conv2D has bugs with dilations (https://github.com/tensorflow/tensorflow/issues/26797) with rename_get_variable({'kernel': 'W', 'bias': 'b'}): layer = tf.layers.Conv2D( filters, kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, _reuse=tf.get_variable_scope().reuse) ret = layer.apply(inputs, scope=tf.get_variable_scope()) ret = tf.identity(ret, name='output') ret.variables = VariableHolder(W=layer.kernel) if use_bias: ret.variables.b = layer.bias else: if masking == True: assert split == 1, "Pruining group conv is not supported yet" # group conv implementation data_format = get_data_format(data_format, keras_mode=False) in_shape = inputs.get_shape().as_list() channel_axis = 3 if data_format == 'NHWC' else 1 in_channel = in_shape[channel_axis] assert in_channel is not None, "[Conv2D] Input cannot have unknown channel!" assert in_channel % split == 0 assert kernel_regularizer is None and bias_regularizer is None and activity_regularizer is None, \ "Not supported by group conv or dilated conv!" out_channel = filters assert out_channel % split == 0 assert dilation_rate == [1, 1] or get_tf_version_tuple() >= (1, 5), 'TF>=1.5 required for dilated conv.' kernel_shape = shape2d(kernel_size) filter_shape = kernel_shape + [in_channel / split, out_channel] stride = shape4d(strides, data_format=data_format) kwargs = dict(data_format=data_format) if get_tf_version_tuple() >= (1, 5): kwargs['dilations'] = shape4d(dilation_rate, data_format=data_format) W = tf.get_variable( 'W', filter_shape, initializer=kernel_initializer) if use_bias: b = tf.get_variable('b', [out_channel], initializer=bias_initializer) if split == 1: if masking: W = pruning.apply_mask(W) conv = tf.nn.conv2d(inputs, W, stride, padding.upper(), **kwargs) else: conv = None if get_tf_version_tuple() >= (1, 13): try: conv = tf.nn.conv2d(inputs, W, stride, padding.upper(), **kwargs) except ValueError: log_once("CUDNN group convolution support is only available with " "https://github.com/tensorflow/tensorflow/pull/25818 . " "Will fall back to a loop-based slow implementation instead!", 'warn') if conv is None: inputs = tf.split(inputs, split, channel_axis) kernels = tf.split(W, split, 3) outputs = [tf.nn.conv2d(i, k, stride, padding.upper(), **kwargs) for i, k in zip(inputs, kernels)] conv = tf.concat(outputs, channel_axis) ret = tf.nn.bias_add(conv, b, data_format=data_format) if use_bias else conv if activation is not None: ret = activation(ret) ret = tf.identity(ret, name='output') ret.variables = VariableHolder(W=W) if use_bias: ret.variables.b = b return ret
def mpusim_conv2d( inputs, filters, kernel_size, strides=(1, 1), padding='same', data_format='channels_last', dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initializer=None, bias_initializer=tf.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, split=1, activations_datatype_size_byte=1, weights_datatype_size_byte=1, results_datatype_size_byte=4, systolic_array_height=256, systolic_array_width=256, activation_fifo_depth=8, accumulator_array_height=4096, log_file_output_dir='.', model_name='unnamed'): """ Similar to `tf.layers.Conv2D`, but with some differences: 1. Default kernel initializer is variance_scaling_initializer(2.0). 2. Default padding is 'same'. 3. Support 'split' argument to do group convolution. Variable Names: * ``W``: weights * ``b``: bias """ if kernel_initializer is None: if get_tf_version_tuple() <= (1, 12): kernel_initializer = tf.contrib.layers.variance_scaling_initializer(2.0) else: kernel_initializer = tf.keras.initializers.VarianceScaling(2.0, distribution='untruncated_normal') dilation_rate = shape2d(dilation_rate) # group conv implementation data_format = get_data_format(data_format, keras_mode=False) in_shape = inputs.get_shape().as_list() channel_axis = 3 if data_format == 'NHWC' else 1 in_channel = in_shape[channel_axis] assert in_channel is not None, "[mpusim_conv2d] Input cannot have unknown channel!" assert in_channel % split == 0 assert kernel_regularizer is None and bias_regularizer is None and activity_regularizer is None, \ "Not supported by group conv or dilated conv!" out_channel = filters assert out_channel % split == 0 assert dilation_rate == [1, 1] or get_tf_version_tuple() >= (1, 5), 'TF>=1.5 required for dilated conv.' kernel_shape = shape2d(kernel_size) filter_shape = kernel_shape + [in_channel / split, out_channel] stride = shape4d(strides, data_format=data_format) kwargs = dict(data_format=data_format) if get_tf_version_tuple() >= (1, 5): kwargs['dilations'] = shape4d(dilation_rate, data_format=data_format) W = tf.get_variable( 'W', filter_shape, initializer=kernel_initializer) if use_bias: b = tf.get_variable('b', [out_channel], initializer=bias_initializer) if split == 1: conv = mpu_sim_conv2d_lib.mpu_sim_conv2d(inputs, W, activations_datatype_size_byte, weights_datatype_size_byte, results_datatype_size_byte, systolic_array_height, systolic_array_width, activation_fifo_depth, accumulator_array_height, log_file_output_dir, model_name, stride, padding.upper(), **kwargs) else: inputs = tf.split(inputs, split, channel_axis) kernels = tf.split(W, split, 3) outputs = [mpu_sim_conv2d_lib.mpu_sim_conv2d(input_block, kernel_block, activations_datatype_size_byte, weights_datatype_size_byte, results_datatype_size_byte, systolic_array_height, systolic_array_width, activation_fifo_depth, accumulator_array_height, log_file_output_dir, model_name, stride, padding.upper(), **kwargs) for input_block, kernel_block in zip(inputs, kernels)] conv = tf.concat(outputs, channel_axis) ret = tf.nn.bias_add(conv, b, data_format=data_format) if use_bias else conv if activation is not None: ret = activation(ret) ret = tf.identity(ret, name='output') ret.variables = VariableHolder(W=W) if use_bias: ret.variables.b=b return ret