Exemple #1
0
    model = regression_model(
            features.shape[1],
            emb_mat,
            seqs.shape[1],
            conv_layers=config['conv_layers'],
            filters=config['conv_filters'],
            dropout=config['dropout'],
            fc_layers=config['fc_layers'],
            fc_units=config['fc_units'],
            metrics=[r2],
    )
    save_architecture(model, model_path + '.json')

    # load model callbacks
    cbs = get_callbacks(model_name=model_name, log_dir=logging_path, stop_patience=10, lr_patience=4, verbose=1, emb_freq=5, emb_layers=['word_embedding'], emb_meta={'word_embedding': 'word_labels.tsv'})

    # train model
    model.fit(
            {'text_input': seqs[:train_size], 'aux_input': features[:train_size]},
            {'output': labels[:train_size]},
            validation_data=({'text_input': seqs[-val_size:], 'aux_input': features[-val_size:]}, {'output': labels[-val_size:]}),
            batch_size=batch_size,
            epochs=200,
            verbose=0,
            shuffle=True,
            callbacks=cbs,
    )

    history = cbs[2]
    print_regression_metrics(history)
    print("Validation set: {} examples".format(val_size))

    # Create logging directory
    get_ipython().system('mkdir -p $logging_path')
    # Remove prior logs
    get_ipython().system('rm $logging_path/*')

    # load and save model
    model = regression_model(feats.shape[1],
                             config['num_layers'],
                             config['num_units'],
                             metrics=[r2])
    save_architecture(model, model_path + '.json')

    # load model callbacks
    cbs = get_callbacks(model_name=model_name, log_dir=logging_path, verbose=1)

    # train model
    model.fit(feats[:train_size],
              labels[:train_size],
              validation_data=(feats[-val_size:], labels[-val_size:]),
              batch_size=batch_size,
              epochs=100,
              verbose=0,
              shuffle=True,
              callbacks=cbs)

    # print best result
    history = cbs[2]
    print_regression_metrics(history)