Exemple #1
0
def change_basis(target, axis, daggered=False):
    """
    helper function; returns circuit that performs change of basis.
    Parameters
    ----------
    target:
        the qubit having its basis changed
    axis:
        The axis of rotation to shift into.
    daggered: bool:
        adjusts the sign of the gate if axis = 1, I.E, change of basis about Y axis.

    Returns
    -------
    QCircuit that performs change of basis on target qubit onto desired axis

    """
    if isinstance(axis, str):
        axis = RotationGateImpl.string_to_axis[axis.lower()]

    if axis == 0:
        return H(target=target)
    elif axis == 1 and daggered:
        return Rx(angle=-numpy.pi / 2, target=target)
    elif axis == 1:
        return Rx(angle=numpy.pi / 2, target=target)
    else:
        return QCircuit()
Exemple #2
0
def change_basis(target, axis, daggered=False):
    if isinstance(axis, str):
        axis = RotationGateImpl.string_to_axis[axis.lower()]

    if axis == 0:
        return H(target=target)
    elif axis == 1 and daggered:
        return Rx(angle=-numpy.pi / 2, target=target)
    elif axis == 1:
        return Rx(angle=numpy.pi / 2, target=target)
    else:
        return QCircuit()
Exemple #3
0
def test_circuit_from_moments():
    c = QCircuit()
    c += CNOT(target=0, control=(1, 2, 3))
    c += Phase(phi=numpy.pi, target=4)
    c += Rx(angle=Variable('a'), target=[0, 3])
    c += H(target=[0, 1])
    c += Rx(angle=Variable('a'), target=[2, 3])
    ## table[1] should equal 1 at this point, len(moments should be 3)
    c += Z(target=1)
    c += Rx(angle=Variable('a'), target=[0, 3])
    moms = c.moments
    c2 = QCircuit.from_moments(moms)
    assert c == c2
Exemple #4
0
def test_canonical_moments():
    c = QCircuit()
    c += CNOT(target=0, control=(1, 2, 3))
    c += Rx(angle=Variable('a'), target=[0, 3])
    c += H(target=[0, 1])
    c += Rx(angle=Variable('a'), target=[2, 3])
    c += Rx(angle=Variable('a'), target=[0, 3])
    c += Z(target=1)
    c += Phase(phi=numpy.pi, target=4)
    moms = c.canonical_moments
    assert len(moms) == 6
    assert (moms[0].gates[1].parameter == assign_variable(numpy.pi))
    assert (moms[0].gates[1].target == (4, ))
    assert hasattr(moms[3].gates[0], 'axis')
    assert len(moms[0].qubits) == 5
Exemple #5
0
def test_conventions():
    qubit = numpy.random.randint(0, 3)
    angle = Variable("angle")

    Rx1 = Rx(target=qubit, angle=angle)
    Rx2 = QCircuit.wrap_gate(
        RotationGateImpl(axis="X", target=qubit, angle=angle))
    Rx3 = QCircuit.wrap_gate(
        RotationGateImpl(axis="x", target=qubit, angle=angle))
    Rx4 = RotationGate(axis=0, target=qubit, angle=angle)
    Rx5 = RotationGate(axis="X", target=qubit, angle=angle)
    Rx6 = RotationGate(axis="x", target=qubit, angle=angle)
    Rx7 = RotationGate(axis=0, target=qubit, angle=angle)
    Rx7.axis = "X"

    ll = [Rx1, Rx2, Rx3, Rx4, Rx5, Rx6, Rx7]
    for l1 in ll:
        for l2 in ll:
            assert (l1 == l2)

    qubit = 2
    for c in [None, 0, 3]:
        for angle in ["angle", 0, 1.234]:
            for axes in [[0, "x", "X"], [1, "y", "Y"], [2, "z", "Z"]]:
                ll = [
                    RotationGate(axis=i, target=qubit, control=c, angle=angle)
                    for i in axes
                ]
                for l1 in ll:
                    for l2 in ll:
                        assert (l1 == l2)
                        l1.axis = axes[numpy.random.randint(0, 2)]
                        assert (l1 == l2)
Exemple #6
0
def test_basic_gates():
    I = sympy.I
    cos = sympy.cos
    sin = sympy.sin
    exp = sympy.exp
    BS = QubitWaveFunction.from_int
    angle = sympy.pi
    gates = [
        X(0),
        Y(0),
        Z(0),
        Rx(target=0, angle=angle),
        Ry(target=0, angle=angle),
        Rz(target=0, angle=angle),
        H(0)
    ]
    results = [
        BS(1), I * BS(1),
        BS(0),
        cos(-angle / 2) * BS(0) + I * sin(-angle / 2) * BS(1),
        cos(-angle / 2) * BS(0) + I * sin(-angle / 2) * I * BS(1),
        exp(-I * angle / 2) * BS(0), 1 / sympy.sqrt(2) * (BS(0) + BS(1))
    ]
    for i, g in enumerate(gates):
        wfn = simulate(g, backend="symbolic", variables={angle: sympy.pi})
        assert (wfn == strip_sympy_zeros(results[i]))
Exemple #7
0
def compile_ry(gate: RotationGateImpl,
               controlled_rotation: bool = False) -> QCircuit:
    """
    Compile Ry gates into Rx and Rz.
    Parameters
    ----------
    gate:
        the gate.
    controlled_rotation:
        determines if the decomposition of the controlled-Ry gate will be performed in compile_controlled_rotation,
        if not, decomposition will be performed here

    Returns
    -------
    QCircuit, the result of compilation.
    """
    if gate.name.lower() == "ry":

        if not (gate.is_controlled() and controlled_rotation):

            return Rz(target=gate.target, control=None, angle=-numpy.pi / 2) \
                   + Rx(target=gate.target, control=gate.control, angle=gate.parameter) \
                   + Rz(target=gate.target, control=None, angle=numpy.pi / 2)

    return QCircuit.wrap_gate(gate)
Exemple #8
0
def compile_power_base(gate):
    """
    Base case of compile_power_gate: convert a 1-qubit parametrized power gate into rotation gates.
    Parameters
    ----------
    gate:
        the gate.

    Returns
    -------
        A QCircuit; the result of compilation.
    """
    if not isinstance(gate, PowerGateImpl):
        return QCircuit.wrap_gate(gate)

    if gate.is_controlled():
        return QCircuit.wrap_gate(gate)

    power = gate.power
    if gate.name.lower() in ['h', 'hadamard']:
        ### off by global phase of Exp[ pi power /2]
        theta = power * numpy.pi

        result = QCircuit()
        result += Ry(angle=-numpy.pi / 4, target=gate.target)
        result += Rz(angle=theta, target=gate.target)
        result += Ry(angle=numpy.pi / 4, target=gate.target)
    elif gate.name == 'X':
        ### off by global phase of Exp[ pi power /2]
        '''
        if we wanted to do it formally we would use the following
        a=-numpy.pi/2
        b=numpy.pi/2
        theta = power*numpy.pi

        result = QCircuit()
        result+= Rz(angle=b,target=gate.target)
        result+= Ry(angle=theta,target=gate.target)
        result+= Rz(angle=a,target=gate.target)
        '''
        result = Rx(angle=power * numpy.pi, target=gate.target)
    elif gate.name == 'Y':
        ### off by global phase of Exp[ pi power /2]
        theta = power * numpy.pi

        result = QCircuit()
        result += Ry(angle=theta, target=gate.target)
    elif gate.name == 'Z':
        ### off by global phase of Exp[ pi power /2]
        a = 0
        b = power * numpy.pi
        theta = 0
        result = QCircuit()
        result += Rz(angle=b, target=gate.target)
    else:
        raise TequilaException('passed a gate with name ' + gate.name +
                               ', which cannot be handled!')
    return result
Exemple #9
0
def test_consistency():
    angle = numpy.pi / 2
    cpairs = [(CNOT(target=0, control=1), X(target=0, control=1)),
              (Ry(target=0, angle=numpy.pi),
               Rz(target=0, angle=4 * numpy.pi) + X(target=0)),
              (Rz(target=0,
                  angle=numpy.pi), Rz(target=0, angle=numpy.pi) + Z(target=0)),
              (Rz(target=0, angle=angle),
               Rz(target=0, angle=angle / 2) + Rz(target=0, angle=angle / 2)),
              (Rx(target=0, angle=angle),
               Rx(target=0, angle=angle / 2) + Rx(target=0, angle=angle / 2)),
              (Ry(target=0, angle=angle),
               Ry(target=0, angle=angle / 2) + Ry(target=0, angle=angle / 2))]

    for c in cpairs:
        print("circuit=", c[0], "\n", c[1])
        wfn1 = simulate(c[0], backend="symbolic")
        wfn2 = simulate(c[1], backend="symbolic")
        assert (numpy.isclose(wfn1.inner(wfn2), 1.0))
Exemple #10
0
def change_basis(target, axis=None, name=None, daggered=False):
    """
    helper function; returns circuit that performs change of basis.
    Parameters
    ----------
    target:
        the qubit having its basis changed
    axis:
        The axis of rotation to shift into.
    daggered: bool:
        adjusts the sign of the gate if axis = 1, I.E, change of basis about Y axis.

    Returns
    -------
    QCircuit that performs change of basis on target qubit onto desired axis

    """
    if axis is None and name is None:
        raise TequilaException('axis or name must be given.')

    if name:
        name = name.lower()
        if name in ['h', 'hadamard'] and daggered:
            return Ry(angle=numpy.pi / 4, target=target)
        elif name in ['h', 'hadamard']:
            return Ry(angle=-numpy.pi / 4, target=target)
        else:
            name_to_axis = {'rx': 0, 'ry': 1, 'rz': 2}
            axis = name_to_axis.get(name, name)

    if isinstance(axis, str):
        axis = RotationGateImpl.string_to_axis[axis.lower()]

    if axis == 0 and daggered:
        return Ry(angle=numpy.pi / 2, target=target)
    elif axis == 0:
        return Ry(angle=-numpy.pi / 2, target=target)
    elif axis == 1 and daggered:
        return Rx(angle=-numpy.pi / 2, target=target)
    elif axis == 1:
        return Rx(angle=numpy.pi / 2, target=target)
    else:
        return QCircuit()
Exemple #11
0
def test_moments():
    c = QCircuit()
    c += CNOT(target=0, control=(1, 2, 3))
    c += H(target=[0, 1])
    c += Rx(angle=numpy.pi, target=[0, 3])
    c += Z(target=1)
    c += Phase(phi=numpy.pi, target=4)
    moms = c.moments
    assert len(moms) == 3
    assert (moms[0].gates[1].parameter == assign_variable(numpy.pi))
    assert (moms[0].gates[1].target == (4, ))
Exemple #12
0
def compile_power_base(gate):
    if not isinstance(gate, PowerGateImpl):
        return QCircuit.wrap_gate(gate)
    power = gate.parameter
    if gate.name in ['H', 'h', 'Hadamard', 'hadamard']:
        return compile_h_power(gate=gate)
    if gate.name == 'X':
        ### off by global phase of Exp[ pi power /2]
        '''
        if we wanted to do it formally we would use the following
        a=-numpy.pi/2
        b=numpy.pi/2
        theta = power*numpy.pi

        result = QCircuit()
        result+= Rz(angle=b,target=gate.target)
        result+= Ry(angle=theta,target=gate.target)
        result+= Rz(angle=a,target=gate.target)
        '''
        result = Rx(angle=power * numpy.pi, target=gate.target)
    elif gate.name == 'Y':
        ### off by global phase of Exp[ pi power /2]
        theta = power * numpy.pi

        result = QCircuit()
        result += Ry(angle=theta, target=gate.target)
    elif gate.name == 'Z':
        ### off by global phase of Exp[ pi power /2]
        a = 0
        b = power * numpy.pi
        theta = 0
        result = QCircuit()
        result += Rz(angle=b, target=gate.target)
    else:
        raise TequilaException('passed a gate with name ' + gate.name +
                               ', which cannot be handled!')
    return result
Exemple #13
0
def get_axbxc_decomp(gate):
    """
    Break down single controlled parametrized power gates into CNOT and rotations.
    Parameters
    ----------
    gate:
        the gate.

    Returns
    -------
    QCircuit; the result of compilation.
    """

    if not isinstance(gate, PowerGateImpl) or gate.name not in ['X', 'Y', 'Z']:
        return QCircuit.wrap_gate(gate)
    power = gate.parameter
    target = gate.target
    result = QCircuit()
    if gate.name == 'X':
        a = -numpy.pi / 2
        b = numpy.pi / 2
        theta = power * numpy.pi
        '''
        result+=Phase(numpy.pi*power/2,gate.control)
        result+=Rz(-(a-b)/2,target)
        result+=CNOT(gate.control,target)
        #result+=Rz(-(a+b)/2,target)
        result+=Ry(-theta/2,target)
        result+=CNOT(gate.control,target)
        result+=Ry(theta/2,target)
        result+=Rz(a,target=target)
        '''
        '''
        result+=Rz((a-b)/2,target)
        result+=CNOT(gate.control,target)
        #result+=Rz(-(a+b)/2,target)
        result+=Ry(-theta/2,target)
        result+=CNOT(gate.control,target)
        result+=Ry(theta/2,target)
        result+=Rz(a,target)
        result += Phase(numpy.pi * power / 2, gate.control)
        '''
        result += Rx(angle=theta, target=target, control=gate.control)
        result += Phase(numpy.pi * power / 2, gate.control)

    elif gate.name == 'Y':
        ### off by global phase of Exp[ pi power /2]

        theta = power * numpy.pi
        '''
        result+=Phase(numpy.pi*power/2,gate.control)
        result+=CNOT(gate.control,target)
        result+=Ry(-theta/2,target)
        result+=CNOT(gate.control,target)
        result+=Ry(theta/2,target)
        '''
        a = 0
        b = 0
        # result+=Rz((a-b)/2,target)
        result += CNOT(gate.control, target)
        # result+=Rz(-(a+b)/2,target)
        result += Ry(-theta / 2, target)
        result += CNOT(gate.control, target)
        result += Ry(theta / 2, target)
        # result+=Rz(a,target)
        result += Phase(numpy.pi * power / 2, gate.control)

    elif gate.name == 'Z':
        a = 0
        b = power * numpy.pi
        theta = 0

        result += Rz(b / 2, target)
        result += CNOT(gate.control, target)
        result += Rz(-b / 2, target)
        result += CNOT(gate.control, target)
        # result+=Rz(a,target)
        result += Phase(numpy.pi * power / 2, gate.control)
        '''
        result+=Rz(b/2,target)
        result+=CNOT(gate.control,target)
        result+=Rz(-b/2,target)
        result+=CNOT(gate.control,target)
        '''
    return result
Exemple #14
0
              Rz(target=0, control=ctrl, angle=phi)

    if ctrl is not None:
        c_u2 = X(target=ctrl) + c_u2
        c_equiv = X(target=ctrl) + c_equiv

    wfn1 = simulate(c_u2, backend="symbolic")
    wfn2 = simulate(c_equiv, backend="symbolic")

    assert (numpy.isclose(wfn1.inner(wfn2), 1.0))


@pytest.mark.parametrize(
    "gate, theta, phi, lambd",
    [
        (Rx(target=0, control=None, angle=numpy.pi / 5), numpy.pi / 5,
         -numpy.pi / 2, numpy.pi / 2),  # Rx(angle) = u3(angle, -pi/2, pi/2)
        (Rx(target=0, control=1,
            angle=numpy.pi / 6), numpy.pi / 6, -numpy.pi / 2, numpy.pi / 2),
        (Rx(target=0, control=None,
            angle=numpy.pi / 7), numpy.pi / 7, -numpy.pi / 2, numpy.pi / 2),
        (Rx(target=0, control=1,
            angle=numpy.pi / 8), numpy.pi / 8, -numpy.pi / 2, numpy.pi / 2),
        (Ry(target=0, control=1, angle=numpy.pi / 4), numpy.pi / 4, 0,
         0),  # Ry(angle) = u3(angle, 0, 0)
        (Ry(target=0, control=1, angle=numpy.pi / 5), numpy.pi / 5, 0, 0),
        (Ry(target=0, control=1, angle=numpy.pi / 3), numpy.pi / 3, 0, 0),
        (Ry(target=0, control=1, angle=numpy.pi / 2), numpy.pi / 2, 0, 0),
        (Rz(target=0, control=None,
            angle=numpy.pi), 0, 0, numpy.pi),  # Rz(angle) = U(0, 0, angle)
        (Rz(target=0, control=1, angle=numpy.pi / 6), 0, 0, numpy.pi / 6),
Exemple #15
0
def get_axbxc_decomp(gate):
    if not isinstance(gate, PowerGateImpl) or gate.name not in ['X', 'Y', 'Z']:
        return QCircuit.wrap_gate(gate)
    power = gate.parameter
    target = gate.target
    result = QCircuit()
    if gate.name == 'X':
        a = -numpy.pi / 2
        b = numpy.pi / 2
        theta = power * numpy.pi
        '''
        result+=Phase(numpy.pi*power/2,gate.control)
        result+=Rz(-(a-b)/2,target)
        result+=CNOT(gate.control,target)
        #result+=Rz(-(a+b)/2,target)
        result+=Ry(-theta/2,target)
        result+=CNOT(gate.control,target)
        result+=Ry(theta/2,target)
        result+=Rz(a,target=target)
        '''
        '''
        result+=Rz((a-b)/2,target)
        result+=CNOT(gate.control,target)
        #result+=Rz(-(a+b)/2,target)
        result+=Ry(-theta/2,target)
        result+=CNOT(gate.control,target)
        result+=Ry(theta/2,target)
        result+=Rz(a,target)
        result += Phase(numpy.pi * power / 2, gate.control)
        '''
        result += Rx(angle=theta, target=target, control=gate.control)
        result += Phase(numpy.pi * power / 2, gate.control)

    elif gate.name == 'Y':
        ### off by global phase of Exp[ pi power /2]

        theta = power * numpy.pi
        '''
        result+=Phase(numpy.pi*power/2,gate.control)
        result+=CNOT(gate.control,target)
        result+=Ry(-theta/2,target)
        result+=CNOT(gate.control,target)
        result+=Ry(theta/2,target)
        '''
        a = 0
        b = 0
        # result+=Rz((a-b)/2,target)
        result += CNOT(gate.control, target)
        # result+=Rz(-(a+b)/2,target)
        result += Ry(-theta / 2, target)
        result += CNOT(gate.control, target)
        result += Ry(theta / 2, target)
        # result+=Rz(a,target)
        result += Phase(numpy.pi * power / 2, gate.control)

    elif gate.name == 'Z':
        a = 0
        b = power * numpy.pi
        theta = 0

        result += Rz(b / 2, target)
        result += CNOT(gate.control, target)
        result += Rz(-b / 2, target)
        result += CNOT(gate.control, target)
        # result+=Rz(a,target)
        result += Phase(numpy.pi * power / 2, gate.control)
        '''
        result+=Rz(b/2,target)
        result+=CNOT(gate.control,target)
        result+=Rz(-b/2,target)
        result+=CNOT(gate.control,target)
        '''
    return result