def setup_pipeline_network(self, fluid_list): """Setup a pipeline network.""" self.nw = Network(fluids=fluid_list) self.nw.set_attr(p_unit='bar', T_unit='C', iterinfo=False) # %% components # main components pu = Pump('pump') pi = Pipe('pipeline') es = HeatExchangerSimple('energy balance closing') closer = CycleCloser('cycle closer') pu_pi = Connection(pu, 'out1', pi, 'in1') pi_es = Connection(pi, 'out1', es, 'in1') es_closer = Connection(es, 'out1', closer, 'in1') closer_pu = Connection(closer, 'out1', pu, 'in1') self.nw.add_conns(pu_pi, pi_es, es_closer, closer_pu) # %% parametrization of components pu.set_attr(eta_s=0.7) pi.set_attr(pr=0.95, L=100, ks=1e-5, D='var', Q=0) es.set_attr(pr=1) # %% parametrization of connections pu_pi.set_attr(p=20, T=100, m=10, fluid={self.nw.fluids[0]: 1}) # %% solving self.nw.solve('design')
def setup(self): """Set up clausis rankine cycle with turbine driven feed water pump.""" self.Tamb = 20 self.pamb = 1 fluids = ['water'] self.nw = Network(fluids=fluids) self.nw.set_attr(p_unit='bar', T_unit='C', h_unit='kJ / kg') # create components splitter1 = Splitter('splitter 1') merge1 = Merge('merge 1') turb = Turbine('turbine') fwp_turb = Turbine('feed water pump turbine') condenser = HeatExchangerSimple('condenser') fwp = Pump('pump') steam_generator = HeatExchangerSimple('steam generator') cycle_close = CycleCloser('cycle closer') # create busses # power output bus self.power = Bus('power_output') self.power.add_comps({'comp': turb, 'char': 1}) # turbine driven feed water pump internal bus self.fwp_power = Bus('feed water pump power', P=0) self.fwp_power.add_comps( {'comp': fwp_turb, 'char': 1}, {'comp': fwp, 'char': 1, 'base': 'bus'}) # heat input bus self.heat = Bus('heat_input') self.heat.add_comps({'comp': steam_generator, 'base': 'bus'}) self.nw.add_busses(self.power, self.fwp_power, self.heat) # create connections fs_in = Connection(cycle_close, 'out1', splitter1, 'in1', label='fs') fs_fwpt = Connection(splitter1, 'out1', fwp_turb, 'in1') fs_t = Connection(splitter1, 'out2', turb, 'in1') fwpt_ws = Connection(fwp_turb, 'out1', merge1, 'in1') t_ws = Connection(turb, 'out1', merge1, 'in2') ws = Connection(merge1, 'out1', condenser, 'in1') cond = Connection(condenser, 'out1', fwp, 'in1', label='cond') fw = Connection(fwp, 'out1', steam_generator, 'in1', label='fw') fs_out = Connection(steam_generator, 'out1', cycle_close, 'in1') self.nw.add_conns(fs_in, fs_fwpt, fs_t, fwpt_ws, t_ws, ws, cond, fw, fs_out) # component parameters turb.set_attr(eta_s=1) fwp_turb.set_attr(eta_s=1) condenser.set_attr(pr=1) fwp.set_attr(eta_s=1) steam_generator.set_attr(pr=1) # connection parameters fs_in.set_attr(m=10, p=120, T=600, fluid={'water': 1}) cond.set_attr(T=self.Tamb, x=0) # solve network self.nw.solve('design') convergence_check(self.nw.lin_dep)
def setup_Network_individual_offdesign(self): """Set up network for individual offdesign tests.""" self.nw = Network(['H2O'], T_unit='C', p_unit='bar', v_unit='m3 / s') so = Source('source') sp = Splitter('splitter', num_out=2) self.pump1 = Pump('pump 1') self.sc1 = SolarCollector('collector field 1') v1 = Valve('valve1') self.pump2 = Pump('pump 2') self.sc2 = SolarCollector('collector field 2') v2 = Valve('valve2') me = Merge('merge', num_in=2) si = Sink('sink') self.pump1.set_attr(eta_s=0.8, design=['eta_s'], offdesign=['eta_s_char']) self.pump2.set_attr(eta_s=0.8, design=['eta_s'], offdesign=['eta_s_char']) self.sc1.set_attr(pr=0.95, lkf_lin=3.33, lkf_quad=0.011, A=1252, E=700, Tamb=20, eta_opt=0.92, design=['pr'], offdesign=['zeta']) self.sc2.set_attr(pr=0.95, lkf_lin=3.5, lkf_quad=0.011, A=700, E=800, Tamb=20, eta_opt=0.92, design=['pr'], offdesign=['zeta']) fl = {'H2O': 1} inlet = Connection(so, 'out1', sp, 'in1', T=50, p=3, fluid=fl) outlet = Connection(me, 'out1', si, 'in1', p=3) self.sp_p1 = Connection(sp, 'out1', self.pump1, 'in1') self.p1_sc1 = Connection(self.pump1, 'out1', self.sc1, 'in1') self.sc1_v1 = Connection(self.sc1, 'out1', v1, 'in1', p=3.1, T=90) v1_me = Connection(v1, 'out1', me, 'in1') self.sp_p2 = Connection(sp, 'out2', self.pump2, 'in1') self.p2_sc2 = Connection(self.pump2, 'out1', self.sc2, 'in1') self.sc2_v2 = Connection(self.sc2, 'out1', v2, 'in1', p=3.1, m=0.1) v2_me = Connection(v2, 'out1', me, 'in2') self.nw.add_conns(inlet, outlet, self.sp_p1, self.p1_sc1, self.sc1_v1, v1_me, self.sp_p2, self.p2_sc2, self.sc2_v2, v2_me)
def setup_clausius_rankine(self, fluid_list): """Setup a Clausius-Rankine cycle.""" self.nw = Network(fluids=fluid_list) self.nw.set_attr(p_unit='bar', T_unit='C', iterinfo=True) # %% components # main components turb = Turbine('turbine') con = Condenser('condenser') pu = Pump('pump') steam_generator = HeatExchangerSimple('steam generator') closer = CycleCloser('cycle closer') # cooling water so_cw = Source('cooling water inlet') si_cw = Sink('cooling water outlet') # %% connections # main cycle fs_in = Connection(closer, 'out1', turb, 'in1', label='livesteam') ws = Connection(turb, 'out1', con, 'in1', label='wastesteam') cond = Connection(con, 'out1', pu, 'in1', label='condensate') fw = Connection(pu, 'out1', steam_generator, 'in1', label='feedwater') fs_out = Connection(steam_generator, 'out1', closer, 'in1') self.nw.add_conns(fs_in, ws, cond, fw, fs_out) # cooling water cw_in = Connection(so_cw, 'out1', con, 'in2') cw_out = Connection(con, 'out2', si_cw, 'in1') self.nw.add_conns(cw_in, cw_out) # %% parametrization of components turb.set_attr(eta_s=0.9) con.set_attr(pr1=1, pr2=0.99, ttd_u=5) steam_generator.set_attr(pr=0.9) # %% parametrization of connections fs_in.set_attr(p=100, T=500, m=100, fluid={self.nw.fluids[0]: 1}) fw.set_attr(h=200e3) cw_in.set_attr(T=20, p=5, fluid={self.nw.fluids[0]: 1}) cw_out.set_attr(T=30) # %% solving self.nw.solve('design') pu.set_attr(eta_s=0.7) fw.set_attr(h=None) self.nw.solve('design')
def __init__(self): self.nw = Network(fluids=['BICUBIC::water'], p_unit='bar', T_unit='C', h_unit='kJ / kg', iterinfo=False) # components # main cycle eco = HeatExchangerSimple('economizer') eva = HeatExchangerSimple('evaporator') sup = HeatExchangerSimple('superheater') cc = CycleCloser('cycle closer') hpt = Turbine('high pressure turbine') sp1 = Splitter('splitter 1', num_out=2) mpt = Turbine('mid pressure turbine') sp2 = Splitter('splitter 2', num_out=2) lpt = Turbine('low pressure turbine') con = Condenser('condenser') pu1 = Pump('feed water pump') fwh1 = Condenser('feed water preheater 1') fwh2 = Condenser('feed water preheater 2') dsh = Desuperheater('desuperheater') me2 = Merge('merge2', num_in=2) pu2 = Pump('feed water pump 2') pu3 = Pump('feed water pump 3') me = Merge('merge', num_in=2) # cooling water cwi = Source('cooling water source') cwo = Sink('cooling water sink') # connections # main cycle cc_hpt = Connection(cc, 'out1', hpt, 'in1', label='feed steam') hpt_sp1 = Connection(hpt, 'out1', sp1, 'in1', label='extraction1') sp1_mpt = Connection(sp1, 'out1', mpt, 'in1', state='g') mpt_sp2 = Connection(mpt, 'out1', sp2, 'in1', label='extraction2') sp2_lpt = Connection(sp2, 'out1', lpt, 'in1') lpt_con = Connection(lpt, 'out1', con, 'in1') con_pu1 = Connection(con, 'out1', pu1, 'in1') pu1_fwh1 = Connection(pu1, 'out1', fwh1, 'in2') fwh1_me = Connection(fwh1, 'out2', me, 'in1', state='l') me_fwh2 = Connection(me, 'out1', fwh2, 'in2', state='l') fwh2_dsh = Connection(fwh2, 'out2', dsh, 'in2', state='l') dsh_me2 = Connection(dsh, 'out2', me2, 'in1') me2_eco = Connection(me2, 'out1', eco, 'in1', state='l') eco_eva = Connection(eco, 'out1', eva, 'in1') eva_sup = Connection(eva, 'out1', sup, 'in1') sup_cc = Connection(sup, 'out1', cc, 'in1') self.nw.add_conns(cc_hpt, hpt_sp1, sp1_mpt, mpt_sp2, sp2_lpt, lpt_con, con_pu1, pu1_fwh1, fwh1_me, me_fwh2, fwh2_dsh, dsh_me2, me2_eco, eco_eva, eva_sup, sup_cc) # cooling water cwi_con = Connection(cwi, 'out1', con, 'in2') con_cwo = Connection(con, 'out2', cwo, 'in1') self.nw.add_conns(cwi_con, con_cwo) # preheating sp1_dsh = Connection(sp1, 'out2', dsh, 'in1') dsh_fwh2 = Connection(dsh, 'out1', fwh2, 'in1') fwh2_pu2 = Connection(fwh2, 'out1', pu2, 'in1') pu2_me2 = Connection(pu2, 'out1', me2, 'in2') sp2_fwh1 = Connection(sp2, 'out2', fwh1, 'in1') fwh1_pu3 = Connection(fwh1, 'out1', pu3, 'in1') pu3_me = Connection(pu3, 'out1', me, 'in2') self.nw.add_conns(sp1_dsh, dsh_fwh2, fwh2_pu2, pu2_me2, sp2_fwh1, fwh1_pu3, pu3_me) # busses # power bus self.power = Bus('power') self.power.add_comps({ 'comp': hpt, 'char': -1 }, { 'comp': mpt, 'char': -1 }, { 'comp': lpt, 'char': -1 }, { 'comp': pu1, 'char': -1 }, { 'comp': pu2, 'char': -1 }, { 'comp': pu3, 'char': -1 }) # heating bus self.heat = Bus('heat') self.heat.add_comps({ 'comp': eco, 'char': 1 }, { 'comp': eva, 'char': 1 }, { 'comp': sup, 'char': 1 }) self.nw.add_busses(self.power, self.heat) # parametrization # components hpt.set_attr(eta_s=0.9) mpt.set_attr(eta_s=0.9) lpt.set_attr(eta_s=0.9) pu1.set_attr(eta_s=0.8) pu2.set_attr(eta_s=0.8) pu3.set_attr(eta_s=0.8) eco.set_attr(pr=0.99) eva.set_attr(pr=0.99) sup.set_attr(pr=0.99) con.set_attr(pr1=1, pr2=0.99, ttd_u=5) fwh1.set_attr(pr1=1, pr2=0.99, ttd_u=5) fwh2.set_attr(pr1=1, pr2=0.99, ttd_u=5) dsh.set_attr(pr1=0.99, pr2=0.99) # connections eco_eva.set_attr(x=0) eva_sup.set_attr(x=1) cc_hpt.set_attr(m=200, T=650, p=100, fluid={'water': 1}) hpt_sp1.set_attr(p=20) mpt_sp2.set_attr(p=3) lpt_con.set_attr(p=0.05) cwi_con.set_attr(T=20, p=10, fluid={'water': 1}) # test run self.nw.solve('design') document_model(self.nw)
sys_rf = Source('system return') sys_ff = Sink('system feed') sto_rf = Source('storage return') sto_ff = Sink('storage feed') # consumer system cd = Condenser('condenser') # evaporator system valve = Valve('valve') dr = Drum('drum') ev = HeatExchanger('evaporator') su = HeatExchanger('superheater') pump_ev = Pump('evaporator reciculation pump') # compressor-system cp = Compressor('compressor 1') # %% connections # heating system interface sys_IF = Connection(sys_rf, 'out1', cd, 'in2') IF_sys = Connection(cd, 'out2', sys_ff, 'in1') nw.add_conns(sys_IF, IF_sys) # condenser, expansion valve
def setup(self): # %% network setup self.nw = Network(fluids=['water', 'NH3'], T_unit='C', p_unit='bar', h_unit='kJ / kg', m_unit='kg / s') # %% components # sources & sinks cc_coolant = CycleCloser('coolant cycle closer') cc_consumer = CycleCloser('consumer cycle closer') amb_in = Source('source ambient') amb_out = Sink('sink ambient') ic_in = Source('source intercool') ic_out = Sink('sink intercool') # consumer system cd = HeatExchanger('condenser') rp = Pump('recirculation pump') cons = HeatExchangerSimple('consumer') # evaporator system va = Valve('valve') dr = Drum('drum') ev = HeatExchanger('evaporator') su = HeatExchanger('superheater') pu = Pump('pump evaporator') # compressor-system cp1 = Compressor('compressor 1') cp2 = Compressor('compressor 2') he = HeatExchanger('intercooler') # busses self.power = Bus('total compressor power') self.power.add_comps({ 'comp': cp1, 'base': 'bus' }, { 'comp': cp2, 'base': 'bus' }) self.heat = Bus('total delivered heat') self.heat.add_comps({'comp': cd, 'char': -1}) self.nw.add_busses(self.power, self.heat) # %% connections # consumer system c_in_cd = Connection(cc_coolant, 'out1', cd, 'in1') cb_rp = Connection(cc_consumer, 'out1', rp, 'in1') rp_cd = Connection(rp, 'out1', cd, 'in2') self.cd_cons = Connection(cd, 'out2', cons, 'in1') cons_cf = Connection(cons, 'out1', cc_consumer, 'in1') self.nw.add_conns(c_in_cd, cb_rp, rp_cd, self.cd_cons, cons_cf) # connection condenser - evaporator system cd_va = Connection(cd, 'out1', va, 'in1') self.nw.add_conns(cd_va) # evaporator system va_dr = Connection(va, 'out1', dr, 'in1') dr_pu = Connection(dr, 'out1', pu, 'in1') pu_ev = Connection(pu, 'out1', ev, 'in2') ev_dr = Connection(ev, 'out2', dr, 'in2') dr_su = Connection(dr, 'out2', su, 'in2') self.nw.add_conns(va_dr, dr_pu, pu_ev, ev_dr, dr_su) self.amb_in_su = Connection(amb_in, 'out1', su, 'in1') su_ev = Connection(su, 'out1', ev, 'in1') ev_amb_out = Connection(ev, 'out1', amb_out, 'in1') self.nw.add_conns(self.amb_in_su, su_ev, ev_amb_out) # connection evaporator system - compressor system su_cp1 = Connection(su, 'out2', cp1, 'in1') self.nw.add_conns(su_cp1) # compressor-system cp1_he = Connection(cp1, 'out1', he, 'in1') he_cp2 = Connection(he, 'out1', cp2, 'in1') cp2_c_out = Connection(cp2, 'out1', cc_coolant, 'in1') ic_in_he = Connection(ic_in, 'out1', he, 'in2') he_ic_out = Connection(he, 'out2', ic_out, 'in1') self.nw.add_conns(cp1_he, he_cp2, ic_in_he, he_ic_out, cp2_c_out) # %% component parametrization # condenser system x = np.array([ 0, 0.0625, 0.125, 0.1875, 0.25, 0.3125, 0.375, 0.4375, 0.5, 0.5625, 0.6375, 0.7125, 0.7875, 0.9, 0.9875, 1, 1.0625, 1.125, 1.175, 1.2125, 1.2375, 1.25 ]) y = np.array([ 0.0076, 0.1390, 0.2731, 0.4003, 0.5185, 0.6263, 0.7224, 0.8056, 0.8754, 0.9312, 0.9729, 1.0006, 1.0203, 1.0158, 1.0051, 1.0000, 0.9746, 0.9289, 0.8832, 0.8376, 0.7843, 0.7614 ]) rp.set_attr(eta_s=0.8, design=['eta_s'], offdesign=['eta_s_char'], eta_s_char={ 'char_func': CharLine(x, y), 'param': 'm' }) cons.set_attr(pr=1, design=['pr'], offdesign=['zeta']) # evaporator system x = np.linspace(0, 2.5, 26) y = np.array([ 0.000, 0.164, 0.283, 0.389, 0.488, 0.581, 0.670, 0.756, 0.840, 0.921, 1.000, 1.078, 1.154, 1.228, 1.302, 1.374, 1.446, 1.516, 1.585, 1.654, 1.722, 1.789, 1.855, 1.921, 1.986, 2.051 ]) kA_char1 = {'char_func': CharLine(x, y), 'param': 'm'} x = np.array([ 0.0100, 0.0400, 0.0700, 0.1100, 0.1500, 0.2000, 0.2500, 0.3000, 0.3500, 0.4000, 0.4500, 0.5000, 0.5500, 0.6000, 0.6500, 0.7000, 0.7500, 0.8000, 0.8500, 0.9000, 0.9500, 1.0000, 1.5000, 2.0000 ]) y = np.array([ 0.0185, 0.0751, 0.1336, 0.2147, 0.2997, 0.4118, 0.5310, 0.6582, 0.7942, 0.9400, 0.9883, 0.9913, 0.9936, 0.9953, 0.9966, 0.9975, 0.9983, 0.9988, 0.9992, 0.9996, 0.9998, 1.0000, 1.0008, 1.0014 ]) kA_char2 = {'char_func': CharLine(x, y), 'param': 'm'} ev.set_attr(pr1=1, pr2=.999, ttd_l=5, design=['ttd_l'], offdesign=['kA_char'], kA_char1=kA_char1, kA_char2=kA_char2) # no kA modification for hot side! x = np.array([0, 1]) y = np.array([1, 1]) kA_char1 = {'char_func': CharLine(x, y), 'param': 'm'} # characteristic line for superheater kA x = np.array( [0, 0.045, 0.136, 0.244, 0.43, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2]) y = np.array( [0, 0.037, 0.112, 0.207, 0.5, 0.8, 0.85, 0.9, 0.95, 1, 1.04, 1.07]) kA_char2 = {'char_func': CharLine(x, y), 'param': 'm'} su.set_attr(kA_char1=kA_char1, kA_char2=kA_char2, offdesign=['zeta1', 'zeta2', 'kA_char']) x = np.array([ 0, 0.0625, 0.125, 0.1875, 0.25, 0.3125, 0.375, 0.4375, 0.5, 0.5625, 0.6375, 0.7125, 0.7875, 0.9, 0.9875, 1, 1.0625, 1.125, 1.175, 1.2125, 1.2375, 1.25 ]) y = np.array([ 0.0076, 0.1390, 0.2731, 0.4003, 0.5185, 0.6263, 0.7224, 0.8056, 0.8754, 0.9312, 0.9729, 1.0006, 1.0203, 1.0158, 1.0051, 1.0000, 0.9746, 0.9289, 0.8832, 0.8376, 0.7843, 0.7614 ]) pu.set_attr(eta_s=0.8, design=['eta_s'], offdesign=['eta_s_char'], eta_s_char={ 'char_func': CharLine(x, y), 'param': 'm' }) # compressor system x = np.array([0, 0.4, 1, 1.2]) y = np.array([0.5, 0.9, 1, 1.1]) cp1.set_attr(eta_s=0.8, design=['eta_s'], offdesign=['eta_s_char'], eta_s_char={ 'char_func': CharLine(x, y), 'param': 'm' }) cp2.set_attr(eta_s=0.8, design=['eta_s'], offdesign=['eta_s_char'], eta_s_char={ 'char_func': CharLine(x, y), 'param': 'm' }) # characteristic line for intercooler kA x = np.linspace(0, 2.5, 26) y = np.array([ 0.0000, 0.2455, 0.3747, 0.4798, 0.5718, 0.6552, 0.7323, 0.8045, 0.8727, 0.9378, 1.0000, 1.0599, 1.1176, 1.1736, 1.2278, 1.2806, 1.3320, 1.3822, 1.4313, 1.4792, 1.5263, 1.5724, 1.6176, 1.6621, 1.7058, 1.7488 ]) kA_char1 = {'char_func': CharLine(x, y), 'param': 'm'} x = np.linspace(0, 2.5, 26) y = np.array([ 0.000, 0.164, 0.283, 0.389, 0.488, 0.581, 0.670, 0.756, 0.840, 0.921, 1.000, 1.078, 1.154, 1.228, 1.302, 1.374, 1.446, 1.516, 1.585, 1.654, 1.722, 1.789, 1.855, 1.921, 1.986, 2.051 ]) kA_char2 = {'char_func': CharLine(x, y), 'param': 'm'} he.set_attr(kA_char1=kA_char1, kA_char2=kA_char2, offdesign=['zeta1', 'zeta2', 'kA_char']) # characteristic line for condenser kA x = np.linspace(0, 2.5, 26) y = np.array([ 0.0000, 0.2455, 0.3747, 0.4798, 0.5718, 0.6552, 0.7323, 0.8045, 0.8727, 0.9378, 1.0000, 1.0599, 1.1176, 1.1736, 1.2278, 1.2806, 1.3320, 1.3822, 1.4313, 1.4792, 1.5263, 1.5724, 1.6176, 1.6621, 1.7058, 1.7488 ]) kA_char1 = {'char_func': CharLine(x, y), 'param': 'm'} x = np.linspace(0, 2.5, 26) y = np.array([ 0.000, 0.164, 0.283, 0.389, 0.488, 0.581, 0.670, 0.756, 0.840, 0.921, 1.000, 1.078, 1.154, 1.228, 1.302, 1.374, 1.446, 1.516, 1.585, 1.654, 1.722, 1.789, 1.855, 1.921, 1.986, 2.051 ]) kA_char2 = {'char_func': CharLine(x, y), 'param': 'm'} cd.set_attr(kA_char1=kA_char1, kA_char2=kA_char2, pr2=0.9998, design=['pr2'], offdesign=['zeta2', 'kA_char']) # %% connection parametrization # condenser system c_in_cd.set_attr(fluid={'water': 0, 'NH3': 1}, p=60) rp_cd.set_attr(T=60, fluid={'water': 1, 'NH3': 0}, p=10) self.cd_cons.set_attr(T=105) cd_va.set_attr(p=Ref(c_in_cd, 1, -0.01), Td_bp=-5, design=['Td_bp']) # evaporator system cold side pu_ev.set_attr(m=Ref(va_dr, 10, 0), p0=5) dr_su.set_attr(p0=5, T=5) su_cp1.set_attr(p=Ref(dr_su, 1, -0.05), Td_bp=5, design=['Td_bp', 'p']) # evaporator system hot side self.amb_in_su.set_attr(m=20, T=12, p=1, fluid={'water': 1, 'NH3': 0}) su_ev.set_attr(p=Ref(self.amb_in_su, 1, -0.001), design=['p']) ev_amb_out.set_attr() # compressor-system cp1_he.set_attr(p=15) he_cp2.set_attr(T=40, p=Ref(cp1_he, 1, -0.01), design=['T', 'p']) ic_in_he.set_attr(p=1, T=20, m=5, fluid={'water': 1, 'NH3': 0}) he_ic_out.set_attr(p=Ref(ic_in_he, 1, -0.002), design=['p'])
def __init__(self, working_fluid): """Set up model.""" self.working_fluid = working_fluid fluids = ['water', self.working_fluid, 'air'] self.nw = Network(fluids=fluids) self.nw.set_attr(p_unit='bar', T_unit='C', h_unit='kJ / kg') # geo parameters self.geo_mass_flow = 200 geo_steam_share = 0.1 self.T_brine_in = 140 # ambient parameters self.T_amb = 5 self.p_amb = 0.6 # main components geo_steam = Source('geosteam source') geo_brine = Source('geobrine source') geo_reinjection = Sink('re-injection') air_in = Source('air source') air_out = Sink('air sink') air_fan = Compressor('air fan') air_cond = Condenser('condenser') orc_cc = CycleCloser('orc cycle closer') evap_splitter = Splitter('splitter evaporation') evap_merge = Merge('merge evaporation') evap_steam = Condenser('geosteam evaporator') evap_brine = HeatExchanger('geobrine evaporator') dr = Drum('drum') geo_merge = Merge('merge brine') pre = HeatExchanger('preheater') feed_working_fluid_pump = Pump('feed pump') tur = Turbine('turbine') ihe = HeatExchanger('internal heat exchanger') # busses net_power = Bus('net power output') net_power.add_comps( {'comp': tur, 'char': 0.97}, {'comp': feed_working_fluid_pump, 'char': 0.97, 'base': 'bus'}, {'comp': air_fan, 'char': 0.97, 'base': 'bus'} ) ORC_power_bus = Bus('cycle gross power output') ORC_power_bus.add_comps( {'comp': tur}, {'comp': feed_working_fluid_pump} ) geothermal_bus = Bus('thermal input') geothermal_bus.add_comps( {'comp': pre, 'char': -1}, {'comp': evap_brine, 'char': -1}, {'comp': evap_steam, 'char': -1} ) self.nw.add_busses(net_power, ORC_power_bus, geothermal_bus) # turbine to condenser c1 = Connection(orc_cc, 'out1', tur, 'in1', label='1') c2 = Connection(tur, 'out1', ihe, 'in1', label='2') c3 = Connection(ihe, 'out1', air_cond, 'in1', label='3') self.nw.add_conns(c1, c2, c3) # condenser to steam generator c4 = Connection(air_cond, 'out1', feed_working_fluid_pump, 'in1', label='4') c5 = Connection(feed_working_fluid_pump, 'out1', ihe, 'in2', label='5') self.nw.add_conns(c4, c5) # steam generator c6 = Connection(ihe, 'out2', pre, 'in2', label='6') c7 = Connection(pre, 'out2', dr, 'in1', label='7') c8 = Connection(dr, 'out1', evap_splitter, 'in1', label='8') c9 = Connection(evap_splitter, 'out2', evap_steam, 'in2', label='9') c10 = Connection(evap_steam, 'out2', evap_merge, 'in2', label='10') c11 = Connection(evap_splitter, 'out1', evap_brine, 'in2', label='11') c12 = Connection(evap_brine, 'out2', evap_merge, 'in1', label='12') c13 = Connection(evap_merge, 'out1', dr, 'in2', label='13') c0 = Connection(dr, 'out2', orc_cc, 'in1', label='0') self.nw.add_conns(c6, c7, c8, c11, c9, c12, c10, c13, c0) # condenser cold side c20 = Connection(air_in, 'out1', air_fan, 'in1', label='20') c21 = Connection(air_fan, 'out1', air_cond, 'in2', label='21') c22 = Connection(air_cond, 'out2', air_out, 'in1', label='22') self.nw.add_conns(c20, c21, c22) # geo source c30 = Connection(geo_steam, 'out1', evap_steam, 'in1', label='30') c31 = Connection(evap_steam, 'out1', geo_merge, 'in1', label='31') c32 = Connection(geo_brine, 'out1', geo_merge, 'in2', label='32') c33 = Connection(geo_merge, 'out1', evap_brine, 'in1', label='33') self.nw.add_conns(c30, c31, c32, c33) c34 = Connection(evap_brine, 'out1', pre, 'in1', label='34') c35 = Connection(pre, 'out1', geo_reinjection, 'in1', label='35') self.nw.add_conns(c34, c35) # generate a set of stable starting values of every working fluid # fluid settings c6.set_attr(fluid={self.working_fluid: 1.0, 'air': 0.0, 'water': 0.0}) c20.set_attr(fluid={self.working_fluid: 0.0, 'air': 1.0, 'water': 0.0}) c30.set_attr(fluid={self.working_fluid: 0.0, 'air': 0.0, 'water': 1.0}) c32.set_attr(fluid={self.working_fluid: 0.0, 'air': 0.0, 'water': 1.0}) # connection parameters p0 = PSI('P', 'T', self.T_brine_in + 273.15, 'Q', 1, self.working_fluid) c1.set_attr(p0=p0 / 1e5) ws_stable_h0 = ( PSI('H', 'T', self.T_amb + 273.15, 'Q', 1, self.working_fluid) + 0.5 * ( PSI('H', 'T', self.T_brine_in + 273.15, 'Q', 1, self.working_fluid) - PSI('H', 'T', self.T_amb + 273.15, 'Q', 1, self.working_fluid) ) ) / 1e3 c2.set_attr(h=ws_stable_h0) p0 = PSI('P', 'T', self.T_amb + 273.15, 'Q', 1, self.working_fluid) c3.set_attr(Td_bp=5, design=['Td_bp'], p0=p0 / 1e5) c5.set_attr(h=Ref(c4, 1, 1)) # steam generator c30.set_attr( m=self.geo_mass_flow * geo_steam_share, T=self.T_brine_in, x=1, p0=5) c32.set_attr( m=self.geo_mass_flow * (1 - geo_steam_share), T=self.T_brine_in, x=0) c13.set_attr() c12.set_attr(x=0.5) c10.set_attr(x=0.5, design=['x']) c34.set_attr(h=Ref(c33, 1, -50)) c7.set_attr(Td_bp=-2) # main condenser c20.set_attr(p=self.p_amb, T=self.T_amb) c22.set_attr(T=self.T_amb + 15, p=self.p_amb) # component parameters # condensing ihe.set_attr(pr1=0.98, pr2=0.98) air_cond.set_attr(pr1=1, pr2=0.995, ttd_u=10) air_fan.set_attr(eta_s=0.6) # steam generator evap_brine.set_attr(pr1=0.98, ttd_l=8) pre.set_attr(pr1=0.98, pr2=0.98) self.nw.set_attr(iterinfo=False) self.nw.solve('design') self.nw.save('stable_' + self.working_fluid) # specify actual parameters tur.set_attr(eta_s=0.9) feed_working_fluid_pump.set_attr(eta_s=0.75) c2.set_attr(h=None) c5.set_attr(h=None) c34.set_attr(h=None, T=Ref(c33, 1, -10)) self.nw.solve('design') c22.set_attr(T=None) c3.set_attr(Td_bp=None) self.ude_IHE_size = UserDefinedEquation( label='ihe deshuperheat ratio', func=desuperheat, deriv=desuperheat_deriv, latex={ 'equation': r'0 = h_3 - h_2 - x_\mathrm{IHE} \cdot \left(h_3 -' r'h\left(p_2, T_5 + \Delta T_\mathrm{t,u,min} \right)' r'\right)'}, conns=[ self.nw.get_conn('2'), self.nw.get_conn('3'), self.nw.get_conn('5')], params={'distance': 0.0, 'ttd_min': 2} ) if self.nw.lin_dep or self.nw.res[-1] > 1e-3: msg = 'No stable solution found.' raise TESPyNetworkError(msg) print( 'Generated stable starting values for working fluid ' + self.working_fluid + '.')
nw = Network(fluids=fluid_list, p_unit='bar', T_unit='C', p_range=[0.1, 10], T_range=[50, 1200]) # %% components # sinks & sources amb = Source('ambient') sf = Source('fuel') chbp = Sink('chimney bypass') ch = Sink('chimney') cw = Source('cooling water') pump = Pump('cooling water pump') cw_split = Splitter('cooling water splitter') cw_merge = Merge('cooling water merge') fg_split = Splitter('flue gas splitter') fgc = HeatExchanger('flue gas cooler') cons = HeatExchangerSimple('consumer') cw_out = Sink('cooling water sink') # combustion engine ice = CombustionEngine(label='internal combustion engine') # %% connections
# sources & sinks cc = CycleCloser('coolant cycle closer') cc_cons = CycleCloser('consumer cycle closer') amb = Source('ambient air') amb_out1 = Sink('sink ambient 1') amb_out2 = Sink('sink ambient 2') # ambient air system sp = Splitter('splitter') fan = Compressor('fan') # consumer system cd = Condenser('condenser') dhp = Pump('district heating pump') cons = HeatExchangerSimple('consumer') # evaporator system ves = Valve('valve') dr = Drum('drum') ev = HeatExchanger('evaporator') su = HeatExchanger('superheater') erp = Pump('evaporator reciculation pump') # compressor-system cp1 = Compressor('compressor 1') cp2 = Compressor('compressor 2') ic = HeatExchanger('intercooler')
# %% network fluids = ['water'] nw = Network(fluids=fluids) nw.set_attr( p_unit='bar', T_unit='C', h_unit='kJ / kg', p_range=[0.01, 150], h_range=[10, 5000]) # %% components # main components turb = Turbine('turbine') con = Condenser('condenser') pu = Pump('pump') steam_generator = HeatExchangerSimple('steam generator') closer = CycleCloser('cycle closer') # cooling water so_cw = Source('cooling water inlet') si_cw = Sink('cooling water outlet') # %% connections # main cycle fs_in = Connection(closer, 'out1', turb, 'in1') ws = Connection(turb, 'out1', con, 'in1') cond = Connection(con, 'out1', pu, 'in1') fw = Connection(pu, 'out1', steam_generator, 'in1') fs_out = Connection(steam_generator, 'out1', closer, 'in1')
class TestNetworkIndividualOffdesign: def setup_Network_individual_offdesign(self): """Set up network for individual offdesign tests.""" self.nw = Network(['H2O'], T_unit='C', p_unit='bar', v_unit='m3 / s') so = Source('source') sp = Splitter('splitter', num_out=2) self.pump1 = Pump('pump 1') self.sc1 = SolarCollector('collector field 1') v1 = Valve('valve1') self.pump2 = Pump('pump 2') self.sc2 = SolarCollector('collector field 2') v2 = Valve('valve2') me = Merge('merge', num_in=2) si = Sink('sink') self.pump1.set_attr(eta_s=0.8, design=['eta_s'], offdesign=['eta_s_char']) self.pump2.set_attr(eta_s=0.8, design=['eta_s'], offdesign=['eta_s_char']) self.sc1.set_attr(pr=0.95, lkf_lin=3.33, lkf_quad=0.011, A=1252, E=700, Tamb=20, eta_opt=0.92, design=['pr'], offdesign=['zeta']) self.sc2.set_attr(pr=0.95, lkf_lin=3.5, lkf_quad=0.011, A=700, E=800, Tamb=20, eta_opt=0.92, design=['pr'], offdesign=['zeta']) fl = {'H2O': 1} inlet = Connection(so, 'out1', sp, 'in1', T=50, p=3, fluid=fl) outlet = Connection(me, 'out1', si, 'in1', p=3) self.sp_p1 = Connection(sp, 'out1', self.pump1, 'in1') self.p1_sc1 = Connection(self.pump1, 'out1', self.sc1, 'in1') self.sc1_v1 = Connection(self.sc1, 'out1', v1, 'in1', p=3.1, T=90) v1_me = Connection(v1, 'out1', me, 'in1') self.sp_p2 = Connection(sp, 'out2', self.pump2, 'in1') self.p2_sc2 = Connection(self.pump2, 'out1', self.sc2, 'in1') self.sc2_v2 = Connection(self.sc2, 'out1', v2, 'in1', p=3.1, m=0.1) v2_me = Connection(v2, 'out1', me, 'in2') self.nw.add_conns(inlet, outlet, self.sp_p1, self.p1_sc1, self.sc1_v1, v1_me, self.sp_p2, self.p2_sc2, self.sc2_v2, v2_me) def test_individual_design_path_on_connections_and_components(self): """Test individual design path specification.""" self.setup_Network_individual_offdesign() self.nw.solve('design') convergence_check(self.nw.lin_dep) self.sc2_v2.set_attr(m=0) self.nw.solve('design') convergence_check(self.nw.lin_dep) self.nw.save('design1') v1_design = self.sc1_v1.v.val_SI zeta_sc1_design = self.sc1.zeta.val self.sc2_v2.set_attr(T=95, state='l', m=None) self.sc1_v1.set_attr(m=0.001, T=None) self.nw.solve('design') convergence_check(self.nw.lin_dep) self.nw.save('design2') v2_design = self.sc2_v2.v.val_SI zeta_sc2_design = self.sc2.zeta.val self.sc1_v1.set_attr(m=np.nan) self.sc1_v1.set_attr(design=['T'], offdesign=['v'], state='l') self.sc2_v2.set_attr(design=['T'], offdesign=['v'], state='l') self.sc2.set_attr(design_path='design2') self.pump2.set_attr(design_path='design2') self.sp_p2.set_attr(design_path='design2') self.p2_sc2.set_attr(design_path='design2') self.sc2_v2.set_attr(design_path='design2') self.nw.solve('offdesign', design_path='design1') convergence_check(self.nw.lin_dep) self.sc1.set_attr(E=500) self.sc2.set_attr(E=950) self.nw.solve('offdesign', design_path='design1') convergence_check(self.nw.lin_dep) self.sc2_v2.set_attr(design_path=np.nan) # volumetric flow comparison msg = ('Design path was set to None, is ' + str(self.sc2_v2.design_path) + '.') assert self.sc2_v2.design_path is None, msg # volumetric flow comparison msg = ('Value of volumetric flow must be ' + str(v1_design) + ', is ' + str(self.sc1_v1.v.val_SI) + '.') assert round(v1_design, 5) == round(self.sc1_v1.v.val_SI, 5), msg msg = ('Value of volumetric flow must be ' + str(v2_design) + ', is ' + str(self.sc2_v2.v.val_SI) + '.') assert round(v2_design, 5) == round(self.sc2_v2.v.val_SI, 5), msg # zeta value of solar collector comparison msg = ('Value of zeta must be ' + str(zeta_sc1_design) + ', is ' + str(self.sc1.zeta.val) + '.') assert round(zeta_sc1_design, 0) == round(self.sc1.zeta.val, 0), msg msg = ('Value of zeta must be ' + str(zeta_sc2_design) + ', is ' + str(self.sc2.zeta.val) + '.') assert round(zeta_sc2_design, 0) == round(self.sc2.zeta.val, 0), msg shutil.rmtree('./design1', ignore_errors=True) shutil.rmtree('./design2', ignore_errors=True) def test_local_offdesign_on_connections_and_components(self): """Test local offdesign feature.""" self.setup_Network_individual_offdesign() self.nw.solve('design') convergence_check(self.nw.lin_dep) self.sc2_v2.set_attr(m=0) self.nw.solve('design') convergence_check(self.nw.lin_dep) self.nw.save('design1') self.sc1_v1.set_attr(design=['T'], offdesign=['v'], state='l') self.sc2_v2.set_attr(design=['T'], offdesign=['v'], state='l') self.sc1.set_attr(local_offdesign=True, design_path='design1') self.pump1.set_attr(local_offdesign=True, design_path='design1') self.sp_p1.set_attr(local_offdesign=True, design_path='design1') self.p1_sc1.set_attr(local_offdesign=True, design_path='design1') self.sc1_v1.set_attr(local_offdesign=True, design_path='design1') self.sc1.set_attr(E=500) self.sc2_v2.set_attr(T=95, m=np.nan) self.nw.solve('design') convergence_check(self.nw.lin_dep) self.nw.save('design2') # connections and components on side 1 must have switched to offdesign msg = ('Solar collector outlet temperature must be different from ' + 'design value ' + str(round(self.sc1_v1.T.design - 273.15, 1)) + ', is ' + str(round(self.sc1_v1.T.val, 1)) + '.') assert self.sc1_v1.T.design > self.sc1_v1.T.val, msg msg = ('Parameter eta_s_char must be set for pump one.') assert self.pump1.eta_s_char.is_set, msg msg = ('Parameter v must be set for connection from solar collector1 ' 'to pump1.') assert self.sc1_v1.v.val_set, msg shutil.rmtree('./design1', ignore_errors=True) shutil.rmtree('./design2', ignore_errors=True) def test_missing_design_path_local_offdesign_on_connections(self): """Test missing design path on connections in local offdesign mode.""" self.setup_Network_individual_offdesign() self.nw.solve('design') convergence_check(self.nw.lin_dep) self.sc2_v2.set_attr(m=0) self.nw.solve('design') convergence_check(self.nw.lin_dep) self.nw.save('design1') self.sc1_v1.set_attr(design=['T'], offdesign=['v'], state='l') self.sc2_v2.set_attr(design=['T'], offdesign=['v'], state='l') self.sc1.set_attr(local_offdesign=True, design_path='design1') self.pump1.set_attr(local_offdesign=True, design_path='design1') self.sp_p1.set_attr(local_offdesign=True, design_path='design1') self.p1_sc1.set_attr(local_offdesign=True, design_path='design1') self.sc1_v1.set_attr(local_offdesign=True) self.sc1.set_attr(E=500) self.sc2_v2.set_attr(T=95, m=np.nan) try: self.nw.solve('design', init_only=True) except TESPyNetworkError: pass shutil.rmtree('./design1', ignore_errors=True)
# waste heat recovery suph = HeatExchanger('superheater') evap = HeatExchanger('evaporator') drum = Drum('drum') eco = HeatExchanger('economizer') ch = Sink('chimney') # steam turbine part turb_hp = Turbine('steam turbine high pressure') cond_dh = Condenser('district heating condenser') mp_split = Splitter('mp split') turb_lp = Turbine('steam turbine low pressure') cond = Condenser('condenser') merge = Merge('merge') pump1 = Pump('feed water pump 1') pump2 = Pump('feed water pump 2') ls_out = Sink('ls sink') ls_in = Source('ls source') mp_valve = Valve('mp valve') # district heating dh_in = Source('district heating backflow') dh_out = Sink('district heating feedflow') # cooling water cw_in = Source('cooling water backflow') cw_out = Sink('cooling water feedflow') # %% connections # gas turbine part
m_unit='kg / s') # %% components # sources & sinks c_in = Source('coolant in') cons_closer = CycleCloser('consumer cycle closer') amb_in = Source('source ambient') amb_out = Sink('sink ambient') # consumer system cd = Condenser('condenser') rp = Pump('recirculation pump') cons = HeatExchangerSimple('consumer') # evaporator system va = Valve('valve') dr = Drum('drum') ev = HeatExchanger('evaporator') su = HeatExchanger('superheater') pu = Pump('pump evaporator') cp1 = Sink('compressor 1') # %% connections # consumer system
m_unit='kg / s') # %% components cc = CycleCloser('cycle closer') # heat pump system cd = Condenser('condenser') va = Valve('valve') ev = HeatExchanger('evaporator') cp = Compressor('compressor') # geothermal heat collector gh_in = Source('ground heat feed flow') gh_out = Sink('ground heat return flow') ghp = Pump('ground heat loop pump') # heating system hs_feed = Sink('heating system feed flow') hs_ret = Source('heating system return flow') hsp = Pump('heating system pump') # %% connections # heat pump system cc_cd = Connection(cc, 'out1', cd, 'in1') cd_va = Connection(cd, 'out1', va, 'in1') va_ev = Connection(va, 'out1', ev, 'in2') ev_cp = Connection(ev, 'out2', cp, 'in1') cp_cc = Connection(cp, 'out1', cc, 'in1') nw.add_conns(cc_cd, cd_va, va_ev, ev_cp, cp_cc)
def setup(self): """ Full model validation of SEGS model in TESPy vs. EBSILON. Find original models at https://github.com/fwitte/SEGS_exergy. """ # specification of ambient state self.pamb = 1.013 self.Tamb = 25 # setting up network self.nw = Network(fluids=['water', 'INCOMP::TVP1', 'air']) self.nw.set_attr(T_unit='C', p_unit='bar', h_unit='kJ / kg', m_unit='kg / s', s_unit="kJ / kgK") # components definition air_in = Source('Ambient air source', fkt_group='CW') air_out = Sink('Ambient air sink', fkt_group='CW') closer_pt = CycleCloser('Cycle closer pt', fkt_group='SF') pt = ParabolicTrough('Parabolic trough', fkt_group='SF') ptpump = Pump('HTF pump', fkt_group='SF') closer = CycleCloser('Cycle closer power cycle', fkt_group='SG') eco = HeatExchanger('Economizer', fkt_group='SG') eva = HeatExchanger('Evaporator', fkt_group='SG') sup = HeatExchanger('Superheater', fkt_group='SG') drum = Drum('Drum', fkt_group='SG') reh = HeatExchanger('Reheater', fkt_group='RH') hpt1 = Turbine('HP turbine 1', fkt_group='HPT') hpt2 = Turbine('HP turbine 2', fkt_group='HPT') lpt1 = Turbine('LP turbine 1', fkt_group='LPT') lpt2 = Turbine('LP turbine 2', fkt_group='LPT') lpt3 = Turbine('LP turbine 3', fkt_group='LPT') lpt4 = Turbine('LP turbine 4', fkt_group='LPT') lpt5 = Turbine('LP turbine 5', fkt_group='LPT') cond = Condenser('Condenser', fkt_group='CW') condpump = Pump('Condenser pump', fkt_group='CW') fwt = Merge('Feedwater tank', num_in=3, fkt_group='LPP') fwp = Pump('Feedwater pump', fkt_group='FWP') cwp = Pump('Cooling water pump', fkt_group='CW') closer_cw = CycleCloser('Cycle closer cw', fkt_group='CW') ct = HeatExchanger('Cooling tower', fkt_group='CW') fan = Compressor('Cooling tower fan', fkt_group='CW') sp1 = Splitter('Splitter 1', fkt_group='HPT') sp2 = Splitter('Splitter 2', fkt_group='HPT') sp3 = Splitter('Splitter 3', fkt_group='LPT') sp4 = Splitter('Splitter 4', fkt_group='LPT') sp5 = Splitter('Splitter 5', fkt_group='LPT') sp6 = Splitter('Splitter 6', fkt_group='LPT') sp7 = Splitter('Splitter 7', fkt_group='SF') m1 = Merge('Merge 1', fkt_group='CW') m2 = Merge('Merge 2', fkt_group='HPP') m3 = Merge('Merge 3', fkt_group='LPP') m4 = Merge('Merge 4', fkt_group='LPP') m5 = Merge('Merge 5', fkt_group='SF') v1 = Valve('Valve 1', fkt_group='HPP') v2 = Valve('Valve 2', fkt_group='HPP') v3 = Valve('Valve 3', fkt_group='LPP') v4 = Valve('Valve 4', fkt_group='LPP') v5 = Valve('Valve 5', fkt_group='LPP') hppre1 = Condenser('High pressure preheater 1', fkt_group='HPP') hppre2 = Condenser('High pressure preheater 2', fkt_group='HPP') hppre1_sub = HeatExchanger('High pressure preheater 1 subcooling', fkt_group='HPP') hppre2_sub = HeatExchanger('High pressure preheater 2 subcooling', fkt_group='HPP') lppre1 = Condenser('Low pressure preheater 1', fkt_group='LPP') lppre2 = Condenser('Low pressure preheater 2', fkt_group='LPP') lppre3 = Condenser('Low pressure preheater 3', fkt_group='LPP') lppre1_sub = HeatExchanger('Low pressure preheater 1 subcooling', fkt_group='LPP') lppre2_sub = HeatExchanger('Low pressure preheater 2 subcooling', fkt_group='LPP') lppre3_sub = HeatExchanger('Low pressure preheater 3 subcooling', fkt_group='LPP') # connections definition # power cycle c1 = Connection(sup, 'out2', closer, 'in1', label='1') c2 = Connection(closer, 'out1', hpt1, 'in1', label='2') c3 = Connection(hpt1, 'out1', sp1, 'in1', label='3') c4 = Connection(sp1, 'out1', hpt2, 'in1', label='4') c5 = Connection(hpt2, 'out1', sp2, 'in1', label='5') c6 = Connection(sp2, 'out1', reh, 'in2', label='6') c7 = Connection(reh, 'out2', lpt1, 'in1', label='7') c8 = Connection(lpt1, 'out1', sp3, 'in1', label='8') c9 = Connection(sp3, 'out1', lpt2, 'in1', label='9') c10 = Connection(lpt2, 'out1', sp4, 'in1', label='10') c11 = Connection(sp4, 'out1', lpt3, 'in1', label='11') c12 = Connection(lpt3, 'out1', sp5, 'in1', label='12') c13 = Connection(sp5, 'out1', lpt4, 'in1', label='13') c14 = Connection(lpt4, 'out1', sp6, 'in1', label='14') c15 = Connection(sp6, 'out1', lpt5, 'in1', label='15') c16 = Connection(lpt5, 'out1', m1, 'in1', label='16') c17 = Connection(m1, 'out1', cond, 'in1', label='17') c18 = Connection(cond, 'out1', condpump, 'in1', label='18') c19 = Connection(condpump, 'out1', lppre1, 'in2', label='19') # c19 = Connection(condpump, 'out1', lppre1_sub, 'in2', label='19') # c20 = Connection(lppre1_sub, 'out2', lppre1, 'in2', label='20') c21 = Connection(lppre1, 'out2', lppre2, 'in2', label='21') # c21 = Connection(lppre1, 'out2', lppre2_sub, 'in2', label='21') # c22 = Connection(lppre2_sub, 'out2', lppre2, 'in2', label='22') c23 = Connection(lppre2, 'out2', lppre3, 'in2', label='23') # c23 = Connection(lppre2, 'out2', lppre3_sub, 'in2', label='23') # c24 = Connection(lppre3_sub, 'out2', lppre3, 'in2', label='24') c25 = Connection(lppre3, 'out2', fwt, 'in1', label='25') c26 = Connection(fwt, 'out1', fwp, 'in1', label='26') c27 = Connection(fwp, 'out1', hppre1, 'in2', label='27') c29 = Connection(hppre1, 'out2', hppre2, 'in2', label='29') c31 = Connection(hppre2, 'out2', eco, 'in2', label='31') c36 = Connection(sp1, 'out2', hppre2, 'in1', label='36') c37 = Connection(hppre2, 'out1', v1, 'in1', label='37') c39 = Connection(v1, 'out1', m2, 'in2', label='39') c40 = Connection(sp2, 'out2', m2, 'in1', label='40') c41 = Connection(m2, 'out1', hppre1, 'in1', label='41') c42 = Connection(hppre1, 'out1', v2, 'in1', label='42') c44 = Connection(v2, 'out1', fwt, 'in2', label='44') c45 = Connection(sp3, 'out2', fwt, 'in3', label='45') c46 = Connection(sp4, 'out2', lppre3, 'in1', label='46') c47 = Connection(lppre3, 'out1', v3, 'in1', label='47') # c47 = Connection(lppre3, 'out1', lppre3_sub, 'in1', label='47') # c48 = Connection(lppre3_sub, 'out1', v3, 'in1', label='48') c49 = Connection(v3, 'out1', m3, 'in1', label='49') c50 = Connection(sp5, 'out2', m3, 'in2', label='50') c51 = Connection(m3, 'out1', lppre2, 'in1', label='51') c52 = Connection(lppre2, 'out1', v4, 'in1', label='52') # c52 = Connection(lppre2, 'out1', lppre2_sub, 'in1', label='52') # c53 = Connection(lppre2_sub, 'out1', v4, 'in1', label='53') c54 = Connection(v4, 'out1', m4, 'in2', label='54') c55 = Connection(sp6, 'out2', m4, 'in1', label='55') c56 = Connection(m4, 'out1', lppre1, 'in1', label='56') c57 = Connection(lppre1, 'out1', v5, 'in1', label='57') # c57 = Connection(lppre1, 'out1', lppre1_sub, 'in1', label='57') # c58 = Connection(lppre1_sub, 'out1', v5, 'in1', label='58') c59 = Connection(v5, 'out1', m1, 'in2', label='59') # components from subsystem c32 = Connection(eco, 'out2', drum, 'in1', label='32') c33 = Connection(drum, 'out1', eva, 'in2', label='33') c34 = Connection(eva, 'out2', drum, 'in2', label='34') c35 = Connection(drum, 'out2', sup, 'in2', label='35') c73 = Connection(sup, 'out1', eva, 'in1', label='73') c74 = Connection(eva, 'out1', eco, 'in1', label='74') # cooling water c60 = Connection(cond, 'out2', closer_cw, 'in1', label='60') c61 = Connection(closer_cw, 'out1', ct, 'in1', label='61') c62 = Connection(ct, 'out1', cwp, 'in1', label='62') c63 = Connection(cwp, 'out1', cond, 'in2', label='63') # cooling tower c64 = Connection(air_in, 'out1', fan, 'in1', label='64') c65 = Connection(fan, 'out1', ct, 'in2', label='65') c66 = Connection(ct, 'out2', air_out, 'in1', label='66') # parabolic trough cycle c70 = Connection(pt, 'out1', closer_pt, 'in1', label='67') c71 = Connection(closer_pt, 'out1', sp7, 'in1', label='71') c72 = Connection(sp7, 'out1', sup, 'in1', label='72') c75 = Connection(eco, 'out1', m5, 'in1', label='75') c76 = Connection(sp7, 'out2', reh, 'in1', label='76') c77 = Connection(reh, 'out1', m5, 'in2', label='77') c78 = Connection(m5, 'out1', ptpump, 'in1', label='78') c79 = Connection(ptpump, 'out1', pt, 'in1', label='79') # add connections to network self.nw.add_conns(c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c21, c23, c25, c26, c27, c29, c31, c32, c33, c34, c35, c36, c37, c39, c40, c41, c42, c44, c45, c46, c47, c49, c50, c51, c52, c54, c55, c56, c57, c59, c60, c61, c62, c63, c64, c65, c66, c70, c71, c72, c73, c74, c75, c76, c77, c78, c79) # power bus power = Bus('total output power') power.add_comps({ 'comp': hpt1, 'char': 0.97, 'base': 'component' }, { 'comp': hpt2, 'char': 0.97, 'base': 'component' }, { 'comp': lpt1, 'char': 0.97, 'base': 'component' }, { 'comp': lpt2, 'char': 0.97, 'base': 'component' }, { 'comp': lpt3, 'char': 0.97, 'base': 'component' }, { 'comp': lpt4, 'char': 0.97, 'base': 'component' }, { 'comp': lpt5, 'char': 0.97, 'base': 'component' }, { 'comp': fwp, 'char': 0.95, 'base': 'bus' }, { 'comp': condpump, 'char': 0.95, 'base': 'bus' }, { 'comp': ptpump, 'char': 0.95, 'base': 'bus' }, { 'comp': cwp, 'char': 0.95, 'base': 'bus' }, { 'comp': fan, 'char': 0.95, 'base': 'bus' }) heat_input_bus = Bus('heat input') heat_input_bus.add_comps({'comp': pt, 'base': 'bus'}) exergy_loss_bus = Bus('exergy loss') exergy_loss_bus.add_comps({ 'comp': air_in, 'base': 'bus' }, {'comp': air_out}) self.nw.add_busses(power, heat_input_bus, exergy_loss_bus) # component parameters pt.set_attr(doc=0.95, aoi=0, Tamb=25, A='var', eta_opt=0.73, c_1=0.00496, c_2=0.000691, E=1000, iam_1=1, iam_2=1) ptpump.set_attr(eta_s=0.6) eco.set_attr() eva.set_attr(ttd_l=5) sup.set_attr() hpt1.set_attr(eta_s=0.8376) hpt2.set_attr(eta_s=0.8463) lpt1.set_attr(eta_s=0.8623) lpt2.set_attr(eta_s=0.917) lpt3.set_attr(eta_s=0.9352) lpt4.set_attr(eta_s=0.88) lpt5.set_attr(eta_s=0.6445) cond.set_attr(pr1=1, pr2=0.9, ttd_u=5) condpump.set_attr(eta_s=0.7) fwp.set_attr(eta_s=0.7) cwp.set_attr(eta_s=0.7) ct.set_attr(pr1=0.95) fan.set_attr(eta_s=0.6) lppre1.set_attr(pr1=1, ttd_u=5) lppre2.set_attr(pr1=1, ttd_u=5) lppre3.set_attr(pr1=1, ttd_u=5) hppre1.set_attr(pr1=1, ttd_u=5) hppre2.set_attr(pr1=1, ttd_u=5) lppre1_sub.set_attr(pr1=1, pr2=1, ttd_l=10) lppre2_sub.set_attr(pr1=1, pr2=1, ttd_l=10) lppre3_sub.set_attr(pr1=1, pr2=1, ttd_l=10) hppre1_sub.set_attr(pr1=1, pr2=1, ttd_l=10) hppre2_sub.set_attr(pr1=1, pr2=1, ttd_l=10) # connection parameters # parabolic trough cycle c70.set_attr(fluid={'TVP1': 1, 'water': 0, 'air': 0}, T=390, p=23.304) c76.set_attr(m=Ref(c70, 0.1284, 0)) c73.set_attr(p=22.753) c74.set_attr(p=21.167) c78.set_attr(p=20.34) c79.set_attr(p=41.024) # cooling water c62.set_attr(fluid={ 'TVP1': 0, 'water': 1, 'air': 0 }, T=30, p=self.pamb) # cooling tower c64.set_attr(fluid={ 'water': 0, 'TVP1': 0, 'air': 1 }, p=self.pamb, T=self.Tamb) c65.set_attr(p=self.pamb + 0.0005) c66.set_attr(p=self.pamb, T=30) # power cycle c32.set_attr(Td_bp=-2) c34.set_attr(x=0.5) c1.set_attr(fluid={'water': 1, 'TVP1': 0, 'air': 0}, p=100, T=371) # steam generator pressure values c31.set_attr(p=103.56) c35.set_attr(p=103.42) # turbine pressure values c3.set_attr(p=33.61, m=38.969) c5.set_attr(p=18.58) c7.set_attr(p=17.1, T=371) c8.set_attr(p=7.98) c10.set_attr(p=2.73) c12.set_attr(p=0.96) c14.set_attr(p=0.29) # preheater pressure values c19.set_attr(p=14.755, state='l') c21.set_attr(p=9.9975, state='l') c23.set_attr(p=8.7012, state='l') c25.set_attr(state='l') c27.set_attr(p=125) c29.set_attr(p=112) # condensation c16.set_attr(p=0.08) # feedwater tank c26.set_attr(x=0) # a stable solution is generated for parts of the network self.nw.solve(mode='design') self.nw.del_conns(c19, c21, c23, c27, c29, c37, c42, c47, c52, c57) c19 = Connection(condpump, 'out1', lppre1_sub, 'in2', label='19') c20 = Connection(lppre1_sub, 'out2', lppre1, 'in2', label='20') c21 = Connection(lppre1, 'out2', lppre2_sub, 'in2', label='21') c22 = Connection(lppre2_sub, 'out2', lppre2, 'in2', label='22') c23 = Connection(lppre2, 'out2', lppre3_sub, 'in2', label='23') c24 = Connection(lppre3_sub, 'out2', lppre3, 'in2', label='24') c27 = Connection(fwp, 'out1', hppre1_sub, 'in2', label='27') c28 = Connection(hppre1_sub, 'out2', hppre1, 'in2', label='28') c29 = Connection(hppre1, 'out2', hppre2_sub, 'in2', label='29') c30 = Connection(hppre2_sub, 'out2', hppre2, 'in2', label='30') c37 = Connection(hppre2, 'out1', hppre2_sub, 'in1', label='37') c38 = Connection(hppre2_sub, 'out1', v1, 'in1', label='38') c42 = Connection(hppre1, 'out1', hppre1_sub, 'in1', label='42') c43 = Connection(hppre1_sub, 'out1', v2, 'in1', label='43') c47 = Connection(lppre3, 'out1', lppre3_sub, 'in1', label='47') c48 = Connection(lppre3_sub, 'out1', v3, 'in1', label='48') c52 = Connection(lppre2, 'out1', lppre2_sub, 'in1', label='52') c53 = Connection(lppre2_sub, 'out1', v4, 'in1', label='53') c57 = Connection(lppre1, 'out1', lppre1_sub, 'in1', label='57') c58 = Connection(lppre1_sub, 'out1', v5, 'in1', label='58') self.nw.add_conns(c19, c20, c21, c22, c23, c24, c27, c28, c29, c30, c37, c38, c42, c43, c47, c48, c52, c53, c57, c58) # specification of missing parameters c19.set_attr(p=14.755) c21.set_attr(p=9.9975, state='l') c23.set_attr(p=8.7012, state='l') c27.set_attr(p=125) c29.set_attr(p=112) # solve final state self.nw.solve(mode='design')
def test_Pump(self): """Test component properties of pumps.""" instance = Pump('pump') self.setup_network(instance) fl = {'N2': 0, 'O2': 0, 'Ar': 0, 'DowQ': 1, 'NH3': 0} self.c1.set_attr(fluid=fl, v=1, p=5, T=50) self.c2.set_attr(p=7) instance.set_attr(eta_s=1) self.nw.solve('design') convergence_check(self.nw.lin_dep) # test calculated value for efficiency eta_s = ((isentropic(self.c1.get_flow(), self.c2.get_flow()) - self.c1.h.val_SI) / (self.c2.h.val_SI - self.c1.h.val_SI)) msg = ('Value of isentropic efficiency must be ' + str(eta_s) + ', is ' + str(instance.eta_s.val) + '.') assert eta_s == instance.eta_s.val, msg # isentropic efficiency of 1 means inlet and outlet entropy are # identical s1 = round(s_mix_ph(self.c1.get_flow()), 4) s2 = round(s_mix_ph(self.c2.get_flow()), 4) msg = ('Value of entropy must be identical for inlet (' + str(s1) + ') and outlet (' + str(s2) + ') at 100 % isentropic efficiency.') assert s1 == s2, msg # specify realistic value for efficiency, outlet pressure from flow # char eta_s_d = 0.8 instance.set_attr(eta_s=eta_s_d) self.nw.solve('design') convergence_check(self.nw.lin_dep) self.nw.save('tmp') self.c2.set_attr(p=np.nan) # flow char (pressure rise vs. volumetric flow) x = [0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4] y = np.array([14, 13.5, 12.5, 11, 9, 6.5, 3.5, 0]) * 1e5 char = {'char_func': CharLine(x, y), 'is_set': True} # apply flow char and eta_s char instance.set_attr(flow_char=char, eta_s=np.nan, eta_s_char={ 'char_func': ldc('pump', 'eta_s_char', 'DEFAULT', CharLine), 'is_set': True }) self.nw.solve('offdesign', design_path='tmp') convergence_check(self.nw.lin_dep) # value for difference pressure dp = 650000.0 msg = ('Value of pressure rise must be ' + str(dp) + ', is ' + str(self.c2.p.val_SI - self.c1.p.val_SI) + '.') assert round(self.c2.p.val_SI - self.c1.p.val_SI, 0) == dp, msg # test ohter volumetric flow on flow char self.c1.set_attr(v=0.9) self.nw.solve('offdesign', design_path='tmp') convergence_check(self.nw.lin_dep) dp = 775000.0 msg = ('Value of pressure rise must be ' + str(dp) + ', is ' + str(round(self.c2.p.val_SI - self.c1.p.val_SI, 0)) + '.') assert round(self.c2.p.val_SI - self.c1.p.val_SI, 0) == dp, msg # test value of isentropic efficiency eta_s = round( eta_s_d * instance.eta_s_char.char_func.evaluate( self.c1.v.val_SI / self.c1.v.design), 3) msg = ('Value of isentropic efficiency must be ' + str(eta_s) + ', is ' + str(instance.eta_s.val) + '.') assert eta_s == round(instance.eta_s.val, 3), msg instance.eta_s_char.is_set = False # test boundaries of characteristic line: # lower boundary instance.set_attr(eta_s=0.8) self.c1.set_attr(m=0, v=None) self.nw.solve('design') convergence_check(self.nw.lin_dep) msg = ('Value of power must be ' + str(14e5) + ', is ' + str(round(self.c2.p.val_SI - self.c1.p.val_SI, 0)) + '.') assert round(self.c2.p.val_SI - self.c1.p.val_SI, 0) == 14e5, msg # upper boundary self.c1.set_attr(v=1.5, m=None) self.nw.solve('design') convergence_check(self.nw.lin_dep) msg = ('Value of power must be 0, is ' + str(round(self.c2.p.val_SI - self.c1.p.val_SI, 0)) + '.') assert round(self.c2.p.val_SI - self.c1.p.val_SI, 0) == 0, msg shutil.rmtree('./tmp', ignore_errors=True)
CH4 = Source('fuel source') air = Source('ambient air') # waste heat recovery suph = HeatExchanger('superheater') evap = HeatExchanger('evaporator') dr = Drum('drum') eco = HeatExchanger('economizer') dh_whr = HeatExchanger('waste heat recovery') ch = Sink('chimney') # steam turbine part turb = Turbine('steam turbine') cond = Condenser('condenser') pu = Pump('feed water pump') cc = CycleCloser('ls cycle closer') # district heating dh_in = Source('district heating backflow') dh_out = Sink('district heating feedflow') # %% connections # gas turbine part c_in = Connection(air, 'out1', comp, 'in1') c_out = Connection(comp, 'out1', c_c, 'in1') fuel = Connection(CH4, 'out1', c_c, 'in2') gt_in = Connection(c_c, 'out1', g_turb, 'in1') gt_out = Connection(g_turb, 'out1', suph, 'in1') nw.add_conns(c_in, c_out, fuel, gt_in, gt_out)
nw = Network(fluids=['water', 'NH3'], T_unit='C', p_unit='bar', h_unit='kJ / kg', m_unit='kg / s') # %% components # sources & sinks c_in = Source('coolant in') cons_closer = CycleCloser('consumer cycle closer') va = Sink('valve') # consumer system cd = Condenser('condenser') rp = Pump('recirculation pump') cons = HeatExchangerSimple('consumer') # %% connections # consumer system c_in_cd = Connection(c_in, 'out1', cd, 'in1') close_rp = Connection(cons_closer, 'out1', rp, 'in1') rp_cd = Connection(rp, 'out1', cd, 'in2') cd_cons = Connection(cd, 'out2', cons, 'in1') cons_close = Connection(cons, 'out1', cons_closer, 'in1') nw.add_conns(c_in_cd, close_rp, rp_cd, cd_cons, cons_close)