Exemple #1
0
    def test_movie_lens_fit(self):
        """
        This test checks whether the movielens getter works and that the resulting data is viable for fitting/testing a
        TensorRec model.
        """
        train_interactions, test_interactions, user_features, item_features = get_movielens_100k(
        )

        model = TensorRec()
        model.fit(interactions=train_interactions,
                  user_features=user_features,
                  item_features=item_features)
        predictions = model.predict(user_features=user_features,
                                    item_features=item_features)

        self.assertIsNotNone(predictions)
from tensorrec import TensorRec
from tensorrec.eval import fit_and_eval
from tensorrec.representation_graphs import (
    LinearRepresentationGraph, NormalizedLinearRepresentationGraph
)
from tensorrec.loss_graphs import BalancedWMRBLossGraph

from test.datasets import get_movielens_100k

import logging
logging.getLogger().setLevel(logging.INFO)

# Load the movielens dataset
train_interactions, test_interactions, user_features, item_features, _ = get_movielens_100k(negative_value=0)

# Construct parameters for fitting
epochs = 500
alpha = 0.00001
n_components = 10
verbose = True
learning_rate = .01
n_sampled_items = int(item_features.shape[0] * .1)
fit_kwargs = {'epochs': epochs, 'alpha': alpha, 'verbose': verbose, 'learning_rate': learning_rate,
              'n_sampled_items': n_sampled_items}

# Build two models -- one without an attention graph, one with a linear attention graph
model_without_attention = TensorRec(
    n_components=10,
    n_tastes=3,
    user_repr_graph=NormalizedLinearRepresentationGraph(),
    attention_graph=None,
Exemple #3
0
import numpy as np

from tensorrec import TensorRec
from tensorrec.eval import precision_at_k, recall_at_k
from tensorrec.loss_graphs import BalancedWMRBLossGraph
from tensorrec.prediction_graphs import DotProductPredictionGraph
from tensorrec.representation_graphs import NormalizedLinearRepresentationGraph

from test.datasets import get_movielens_100k

import logging
logging.getLogger().setLevel(logging.INFO)

# Load the movielens dataset
train_interactions, test_interactions, user_features, item_features, item_titles = \
    get_movielens_100k(negative_value=-1.0)

# Assemble parameters for fitting. 'epochs' is 1 in the fit_kwargs because we will be calling fit_partial 1000 times to
# run 1000 epochs.
epochs = 1000
fit_kwargs = {'epochs': 1, 'alpha': 0.0001, 'verbose': True, 'learning_rate': .01,
              'n_sampled_items': int(item_features.shape[0] * .1)}

# Build the TensorRec model
model = TensorRec(n_components=2,
                  biased=True,
                  loss_graph=BalancedWMRBLossGraph(),
                  prediction_graph=DotProductPredictionGraph(),
                  user_repr_graph=NormalizedLinearRepresentationGraph(),
                  normalize_users=True,
                  normalize_items=True,
Exemple #4
0
from tensorrec.representation_graphs import (
    LinearRepresentationGraph, ReLURepresentationGraph,
    NormalizedLinearRepresentationGraph)
from tensorrec.loss_graphs import WMRBLossGraph, BalancedWMRBLossGraph
from tensorrec.prediction_graphs import (DotProductPredictionGraph,
                                         CosineSimilarityPredictionGraph,
                                         EuclidianSimilarityPredictionGraph)
from tensorrec.util import append_to_string_at_point

from test.datasets import get_movielens_100k

import logging
logging.getLogger().setLevel(logging.INFO)

# Load the movielens dataset
train_interactions, test_interactions, user_features, item_features, _ = get_movielens_100k(
    negative_value=0)

# Construct parameters for fitting
epochs = 300
alpha = 0.00001
n_components = 10
verbose = True
learning_rate = .01
n_sampled_items = int(item_features.shape[0] * .1)
biased = False
fit_kwargs = {
    'epochs': epochs,
    'alpha': alpha,
    'verbose': verbose,
    'learning_rate': learning_rate,
    'n_sampled_items': n_sampled_items
 def setUpClass(cls):
     cls.movielens_100k = get_movielens_100k()
 def setUpClass(cls):
     cls.movielens_100k = get_movielens_100k()
import numpy as np

from tensorrec import TensorRec
from tensorrec.eval import precision_at_k, recall_at_k
from tensorrec.input_utils import create_tensorrec_dataset_from_sparse_matrix
from tensorrec.loss_graphs import BalancedWMRBLossGraph
from tensorrec.representation_graphs import ReLURepresentationGraph

from test.datasets import get_movielens_100k

import logging
logging.getLogger().setLevel(logging.INFO)

# Load the movielens dataset
train_interactions, test_interactions, user_features, item_features, item_titles = \
    get_movielens_100k(negative_value=-1.0)

# Assemble parameters for fitting. 'epochs' is 1 in the fit_kwargs because we will be calling fit_partial 1000 times to
# run 1000 epochs.
epochs = 1000
fit_kwargs = {'epochs': 1, 'alpha': 0.0001, 'verbose': True, 'learning_rate': .01,
              'n_sampled_items': int(item_features.shape[0] * .1)}

# Build the TensorRec model
model = TensorRec(n_components=2,
                  biased=False,
                  loss_graph=BalancedWMRBLossGraph(),
                  item_repr_graph=ReLURepresentationGraph(),
                  n_tastes=3)

# Make some random selections of movies and users we want to plot
import keras as ks

from tensorrec import TensorRec
from tensorrec.eval import fit_and_eval
from tensorrec.representation_graphs import AbstractKerasRepresentationGraph
from tensorrec.loss_graphs import SeparationDenseLossGraph

from test.datasets import get_movielens_100k

import logging

logging.getLogger().setLevel(logging.INFO)

train_interactions, test_interactions, user_features, item_features, _ = get_movielens_100k(
)


class ExampleKerasRepresentationGraph(AbstractKerasRepresentationGraph):
    def create_layers(self, n_features, n_components):
        return [
            ks.layers.Dense(int(n_features / 2), activation='relu'),
            ks.layers.Dense(n_components * 2, activation='relu'),
            ks.layers.Dense(n_components, activation='tanh'),
        ]


model = TensorRec(n_components=10,
                  item_repr_graph=ExampleKerasRepresentationGraph(),
                  loss_graph=SeparationDenseLossGraph())

fit_kwargs = {'epochs': 1000, 'learning_rate': .001, 'verbose': True}