def test_compare_analytic(self):
        test_values = 2 ** np.arange(4, 11)
        rel_errors = np.zeros(len(test_values))
        u_max = 1
        print("\n\nComparing mixed Neumann to analytical result")
        for i, N in enumerate(test_values):
            # p is coordinates of all nodes
            # tri is a list of indicies (rows in p) of all nodes belonging to one element
            # edge is lists of all nodes on the edge
            p, tri, edge = gd.GetDisc(N)
            neumann_edges = edge[(p[edge[:, 0]][:, 1] > 0) & (p[edge[:, 1]][:, 1] > 0)]
            dirichlet_edges = edge[(p[edge[:, 0]][:, 1] <= 0) | (p[edge[:, 1]][:, 1] <= 0)]
            u_max = np.max(np.abs(u(p.T)))

            # numerical solution
            U = solve(p, tri, dirichlet_edges, f=f, g=g, neumann_edges=neumann_edges, Nq=4)
            max_error = np.max(np.abs(U - u(p.T)))
            print(f"N = {N}, max error:", max_error)
            self.assertAlmostEqual(max_error, 0, delta=1e2 / N)
            rel_errors[i] = max_error

        rel_errors /= u_max

        fig = plt.figure(figsize=plt.figaspect(1))
        plt.loglog(test_values, rel_errors, marker="o")
        # plt.title("Convergence of relative error for partial Neumann")
        plt.ylabel("Relative error")
        plt.xlabel("$N$ nodes in mesh")
        plt.savefig("figures/convergence_mixed_neumann.pdf")
        plt.clf()
    def test_plot(self):
        N = 1024

        fig = plt.figure(figsize=plt.figaspect(2))

        p, tri, edge = gd.GetDisc(N)
        neumann_edges = edge[(p[edge[:, 0]][:, 1] > 0) & (p[edge[:, 1]][:, 1] > 0)]
        dirichlet_edges = edge[(p[edge[:, 0]][:, 1] <= 0) | (p[edge[:, 1]][:, 1] <= 0)]

        U = solve(p, tri, dirichlet_edges, f, g, neumann_edges, Nq=4)

        ax = fig.add_subplot(2, 1, 1, projection='3d')
        # ax.set_title("Numerical solution for mixed Neumann")
        ax.set_zlabel("$U_{i,j}$")
        ax.plot_trisurf(p[:, 0], p[:, 1], U, cmap=cm.viridis)

        # ax = fig.add_subplot(3, 1, 2, projection='3d')
        # ax.set_title("Analytical solution")
        # ax.set_zlabel("$U_{i,j}$")
        # ax.plot_trisurf(p[:,0],p[:,1],u(p.T),cmap=cm.viridis)

        ax2 = fig.add_subplot(2, 1, 2, projection='3d')
        # ax2.set_title("Error")
        ax2.set_zlabel("$U_{i,j} - u(x_i,y_j)$")
        ax2.plot_trisurf(p[:, 0], p[:, 1], U - u(p.T), cmap=cm.viridis)
        # ax.plot_trisurf(p[:, 0], p[:, 1], U)
        plt.savefig("figures/plot_mixed_neumann.pdf")
        fig.clf()
Exemple #3
0
 def test_plot_disc_mesh(self):
     print("\n\nPlotting meshes")
     n_list = 2 ** np.array([4, 6, 8])
     fig, axis = plt.subplots(1, len(n_list), figsize=plt.figaspect(1/3))
     for i in range(len(n_list)):
         p, tri, edge = gd.GetDisc(n_list[i])
         plt.sca(axis[i])
         plot_disc(p, tri,plt)
     plt.savefig("figures/plot_meshes.pdf")
     plt.clf()
 def test_singularity(self):
     test_values = 2 ** np.arange(4, 11)
     print("\n\nChecking matrix is singular before applying boundary conditions")
     for N in test_values:
         p, tri, edge = gd.GetDisc(N)
         A, F = get_A_F(p, tri, [], f, Nq=4)
         n = np.shape(A)[0]
         rank = np.linalg.matrix_rank(A)
         print("Rank of A: ", rank, ". Size of matrix A :(", n, " x ", n, ")")
         self.assertNotEqual(n, rank)
    def test_plot(self):
        N = 1024

        fig = plt.figure(figsize=plt.figaspect(2))

        p, tri, edge = gd.GetDisc(N)
        U = solve(p, tri, edge, f, Nq=4)
        ax = fig.add_subplot(2, 1, 1, projection='3d')
        # ax.set_title("Numerical solution for Dirichlet")
        ax.set_zlabel("$U_{i,j}$")
        ax.plot_trisurf(p[:, 0], p[:, 1], U, cmap=cm.viridis)

        # ax = fig.add_subplot(3, 1, 2, projection='3d')
        # ax.set_title("Analytical solution")
        # ax.set_zlabel("$U_{i,j}$")
        # ax.plot_trisurf(p[:,0],p[:,1],u(p.T),cmap=cm.viridis)

        ax2 = fig.add_subplot(2, 1, 2, projection='3d')
        # ax2.set_title("Error")
        ax2.set_zlabel("$U_{i,j} - u(x_i,y_j)$")
        ax2.plot_trisurf(p[:, 0], p[:, 1], U - u(p.T), cmap=cm.viridis)
        # ax.plot_trisurf(p[:, 0], p[:, 1], U)
        plt.savefig("figures/plot_homogeneous_dirichlet.pdf")
        plt.clf()