def test_ovr(self):
     model = OneVsRestClassifier(LogisticRegression())
     dump_multiple_classification(
         model,
         allow_failure="StrictVersion(onnxruntime.__version__)"
         " <= StrictVersion('0.2.1')",
         target_opset=TARGET_OPSET)
Exemple #2
0
 def test_extra_trees_classifier(self):
     model = ExtraTreesClassifier(n_estimators=3)
     dump_one_class_classification(
         model,
         allow_failure="StrictVersion(onnx.__version__)"
                       " < StrictVersion('1.2') or "
                       "StrictVersion(onnxruntime.__version__)"
                       " <= StrictVersion('0.2.1')",
     )
     dump_binary_classification(
         model,
         allow_failure=(
             "StrictVersion(onnx.__version__) < StrictVersion('1.2') or "
             "StrictVersion(onnxruntime.__version__)"
             " <= StrictVersion('0.2.1')"
         ),
     )
     dump_multiple_classification(
         model,
         # Operator cast-1 is not implemented in onnxruntime
         allow_failure=(
             "StrictVersion(onnx.__version__) < StrictVersion('1.2') or "
             "StrictVersion(onnxruntime.__version__)"
             " <= StrictVersion('0.2.1')"
         ),
     )
Exemple #3
0
 def test_gradient_boosting_classifier_multi(self):
     model = GradientBoostingClassifier(n_estimators=3)
     dump_multiple_classification(
         model,
         allow_failure="StrictVersion(onnxruntime.__version__)"
         "<= StrictVersion('%s')" % THRESHOLD,
     )
Exemple #4
0
 def test_ovr_string(self):
     model = OneVsRestClassifier(LogisticRegression())
     dump_multiple_classification(model,
                                  verbose=False,
                                  label_string=True,
                                  suffix="String",
                                  target_opset=TARGET_OPSET)
 def test_ova_02(self):
     model = OneVsRestClassifier(LogisticRegression())
     dump_multiple_classification(
         model,
         first_class=2,
         suffix="F2",
         allow_failure=
         "StrictVersion(onnxruntime.__version__) <= StrictVersion('0.2.1')")
Exemple #6
0
 def test_random_forest_classifier(self):
     model = RandomForestClassifier(n_estimators=3)
     dump_one_class_classification(model,
                                   allow_failure="StrictVersion(onnx.__version__) < StrictVersion('1.2')")
     dump_binary_classification(model,
                                allow_failure="StrictVersion(onnx.__version__) < StrictVersion('1.2')")
     dump_multiple_classification(model,
                                  allow_failure="StrictVersion(onnx.__version__) < StrictVersion('1.2')")
 def test_ova_string(self):
     model = OneVsRestClassifier(LogisticRegression())
     dump_multiple_classification(
         model,
         verbose=False,
         label_string=True,
         suffix="String",
         allow_failure=
         "StrictVersion(onnxruntime.__version__) <= StrictVersion('0.2.1')")
 def test_lightgbm_classifier(self):
     model = LGBMClassifier(n_estimators=3, min_child_samples=1)
     dump_binary_classification(
         model, allow_failure="StrictVersion(onnx.__version__) < "
                              "StrictVersion('1.3.0')")
     dump_multiple_classification(
         model,
         allow_failure="StrictVersion(onnx.__version__) < "
                       "StrictVersion('1.3.0')")
Exemple #9
0
 def test_voting_soft_multi(self):
     model = VotingClassifier(voting='soft',
                              flatten_transform=False,
                              estimators=[('lr', LogisticRegression()),
                                          ('lr2', LogisticRegression())])
     dump_multiple_classification(
         model,
         suffix='Soft-OneOffArray',
         allow_failure=
         "StrictVersion(onnxruntime.__version__) <= StrictVersion('0.2.1')")
 def test_voting_soft_multi(self):
     model = VotingClassifier(
         voting="soft",
         flatten_transform=False,
         estimators=[
             ("lr", LogisticRegression()),
             ("lr2", LogisticRegression()),
         ],
     )
     dump_multiple_classification(model,
                                  suffix="Soft",
                                  target_opset=TARGET_OPSET)
Exemple #11
0
 def test_lightgbm_classifier(self):
     model = LGBMClassifier(n_estimators=3, min_child_samples=1)
     dump_binary_classification(model,
                                target_opset={
                                    '': TARGET_OPSET,
                                    'ai.onnx.ml': TARGET_OPSET_ML
                                })
     dump_multiple_classification(model,
                                  target_opset={
                                      '': TARGET_OPSET,
                                      'ai.onnx.ml': TARGET_OPSET_ML
                                  })
Exemple #12
0
 def test_voting_soft_multi_weighted42(self):
     model = VotingClassifier(voting='soft',
                              flatten_transform=False,
                              weights=numpy.array([27, 0.3, 0.5, 0.5]),
                              estimators=[('lr', LogisticRegression()),
                                          ('lra', LogisticRegression()),
                                          ('lrb', LogisticRegression()),
                                          ('lr2', LogisticRegression())])
     dump_multiple_classification(
         model,
         suffix='Weighted42Soft-OneOffArray',
         allow_failure=
         "StrictVersion(onnxruntime.__version__) <= StrictVersion('0.2.1')")
Exemple #13
0
 def test_voting_hard_multi(self):
     # predict_proba is not defined when voting is hard.
     model = VotingClassifier(voting='hard',
                              flatten_transform=False,
                              estimators=[('lr', LogisticRegression()),
                                          ('lr2', DecisionTreeClassifier())
                                          ])
     dump_multiple_classification(
         model,
         suffix='Hard-OneOffArray',
         comparable_outputs=[0],
         allow_failure=
         "StrictVersion(onnxruntime.__version__) <= StrictVersion('0.2.1')")
 def test_voting_soft_multi_weighted(self):
     model = VotingClassifier(
         voting="soft",
         flatten_transform=False,
         weights=numpy.array([1.8, 0.2]),
         estimators=[
             ("lr", LogisticRegression()),
             ("lr2", LogisticRegression()),
         ],
     )
     dump_multiple_classification(model,
                                  suffix="WeightedSoft",
                                  target_opset=TARGET_OPSET)
Exemple #15
0
    def test_xgb_classifier_multi(self):
        iris = load_iris()
        X = iris.data[:, :2]
        y = iris.target

        xgb = XGBClassifier()
        xgb.fit(X, y)
        conv_model = convert_sklearn(
            xgb, initial_types=[
                ('input', FloatTensorType(shape=[None, X.shape[1]]))])
        self.assertTrue(conv_model is not None)
        dump_multiple_classification(
            xgb, allow_failure="StrictVersion(onnx.__version__) "
            "< StrictVersion('1.3.0')")
 def test_voting_hard_multi(self):
     # predict_proba is not defined when voting is hard.
     model = VotingClassifier(
         voting="hard",
         flatten_transform=False,
         estimators=[
             ("lr", LogisticRegression()),
             ("lr2", DecisionTreeClassifier()),
         ],
     )
     dump_multiple_classification(model,
                                  suffix="Hard",
                                  comparable_outputs=[0],
                                  target_opset=TARGET_OPSET)
 def test_decision_tree_classifier(self):
     model = DecisionTreeClassifier()
     dump_one_class_classification(
         model,
         # Operator cast-1 is not implemented in onnxruntime
         allow_failure=
         "StrictVersion(onnx.__version__) < StrictVersion('1.2')")
     dump_binary_classification(
         model,
         allow_failure=
         "StrictVersion(onnx.__version__) < StrictVersion('1.2')")
     dump_multiple_classification(
         model,
         allow_failure=
         "StrictVersion(onnx.__version__) < StrictVersion('1.2')")
Exemple #18
0
 def test_voting_soft_multi(self):
     model = VotingClassifier(
         voting="soft",
         flatten_transform=False,
         estimators=[
             ("lr", LogisticRegression()),
             ("lr2", LogisticRegression()),
         ],
     )
     dump_multiple_classification(
         model,
         suffix="Soft-OneOffArray",
         allow_failure="StrictVersion(onnxruntime.__version__)"
         " <= StrictVersion('0.2.1')",
     )
 def test_voting_soft_multi_weighted(self):
     model = VotingClassifier(
         voting="soft",
         flatten_transform=False,
         weights=numpy.array([1.8, 0.2]),
         estimators=[
             ("lr", LogisticRegression()),
             ("lr2", LogisticRegression()),
         ],
     )
     dump_multiple_classification(
         model,
         suffix="WeightedSoft",
         allow_failure="StrictVersion(onnxruntime.__version__)"
         " <= StrictVersion('0.2.1')",
     )
Exemple #20
0
    def test_xgb_classifier_multi_reglog(self):
        iris = load_iris()
        X = iris.data[:, :2]
        y = iris.target

        xgb = XGBClassifier(objective='reg:logistic')
        xgb.fit(X, y)
        conv_model = convert_sklearn(
            xgb, initial_types=[
                ('input', FloatTensorType(shape=[None, X.shape[1]]))],
            target_opset=TARGET_OPSET)
        self.assertTrue(conv_model is not None)
        dump_multiple_classification(
            xgb, suffix="RegLog",
            allow_failure="StrictVersion(onnx.__version__) < "
            "StrictVersion('1.3.0')")
Exemple #21
0
 def test_voting_soft_multi_string(self):
     model = VotingClassifier(
         voting="soft",
         flatten_transform=False,
         estimators=[
             ("lr", LogisticRegression()),
             ("lr2", LogisticRegression()),
         ],
     )
     dump_multiple_classification(
         model,
         label_string=True,
         suffix="Soft",
         allow_failure="StrictVersion(onnxruntime.__version__)"
         " <= StrictVersion('0.2.1')",
         target_opset=TARGET_OPSET)
 def test_voting_hard_multi(self):
     # predict_proba is not defined when voting is hard.
     model = VotingClassifier(
         voting="hard",
         flatten_transform=False,
         estimators=[
             ("lr", LogisticRegression()),
             ("lr2", DecisionTreeClassifier()),
         ],
     )
     dump_multiple_classification(
         model,
         suffix="Hard",
         comparable_outputs=[0],
         allow_failure="StrictVersion(onnxruntime.__version__)"
         " <= StrictVersion('0.5.0')",
     )
Exemple #23
0
 def test_voting_hard_multi_weighted(self):
     # predict_proba is not defined when voting is hard.
     model = VotingClassifier(
         voting="hard",
         flatten_transform=False,
         weights=numpy.array([1000, 1]),
         estimators=[
             ("lr", LogisticRegression()),
             ("lr2", DecisionTreeClassifier()),
         ],
     )
     dump_multiple_classification(
         model,
         suffix="WeightedHard",
         comparable_outputs=[0],
         allow_failure="StrictVersion(onnxruntime.__version__)"
         " <= StrictVersion('0.5.0')",
         target_opset=TARGET_OPSET)
Exemple #24
0
 def test_voting_soft_multi_weighted42(self):
     model = VotingClassifier(
         voting="soft",
         flatten_transform=False,
         weights=numpy.array([27, 0.3, 0.5, 0.5]),
         estimators=[
             ("lr", LogisticRegression()),
             ("lra", LogisticRegression()),
             ("lrb", LogisticRegression()),
             ("lr2", LogisticRegression()),
         ],
     )
     dump_multiple_classification(
         model,
         suffix="Weighted42Soft",
         allow_failure="StrictVersion(onnxruntime.__version__)"
         " <= StrictVersion('0.2.1')",
         target_opset=TARGET_OPSET)
    def test_xgb_classifier_multi(self):
        iris = load_iris()
        X = iris.data[:, :2]
        y = iris.target

        xgb = XGBClassifier()
        xgb.fit(X, y)
        conv_model = convert_sklearn(
            xgb,
            initial_types=[('input', FloatTensorType(shape=[None, X.shape[1]]))
                           ],
            target_opset={
                '': TARGET_OPSET,
                'ai.onnx.ml': TARGET_OPSET_ML
            })
        self.assertTrue(conv_model is not None)
        dump_multiple_classification(xgb,
                                     target_opset={
                                         '': TARGET_OPSET,
                                         'ai.onnx.ml': TARGET_OPSET_ML
                                     })
Exemple #26
0
 def test_decision_tree_classifier(self):
     model = DecisionTreeClassifier()
     dump_one_class_classification(model)
     dump_binary_classification(model)
     dump_multiple_classification(model)
     dump_multiple_classification(model, label_uint8=True)
     dump_multiple_classification(model, label_string=True)
Exemple #27
0
 def test_decision_tree_classifier(self):
     model = DecisionTreeClassifier()
     dump_one_class_classification(
         model,
         # Operator cast-1 is not implemented in onnxruntime
         allow_failure="StrictVersion(onnx.__version__)"
         " < StrictVersion('1.3') or "
         "StrictVersion(onnxruntime.__version__)"
         " <= StrictVersion('0.2.1')",
     )
     dump_binary_classification(
         model,
         allow_failure="StrictVersion(onnx.__version__)"
         " < StrictVersion('1.3') or "
         "StrictVersion(onnxruntime.__version__)"
         " <= StrictVersion('0.2.1')",
     )
     dump_multiple_classification(
         model,
         allow_failure="StrictVersion(onnx.__version__)"
         " < StrictVersion('1.3') or "
         "StrictVersion(onnxruntime.__version__)"
         " <= StrictVersion('0.2.1')")
     dump_multiple_classification(
         model,
         label_uint8=True,
         allow_failure="StrictVersion(onnx.__version__)"
         " < StrictVersion('1.3') or "
         "StrictVersion(onnxruntime.__version__)"
         " <= StrictVersion('0.2.1')")
     dump_multiple_classification(
         model,
         label_string=True,
         allow_failure="StrictVersion(onnx.__version__)"
         " < StrictVersion('1.3') or "
         "StrictVersion(onnxruntime.__version__)"
         " <= StrictVersion('0.2.1')")
 def test_random_forest_classifier(self):
     model = RandomForestClassifier(n_estimators=3)
     dump_one_class_classification(model)
     dump_binary_classification(model)
     dump_multiple_classification(model)
Exemple #29
0
 def test_ovr(self):
     model = OneVsRestClassifier(LogisticRegression())
     dump_multiple_classification(model, target_opset=TARGET_OPSET)
Exemple #30
0
 def test_ovr_02(self):
     model = OneVsRestClassifier(LogisticRegression())
     dump_multiple_classification(model,
                                  first_class=2,
                                  suffix="F2",
                                  target_opset=TARGET_OPSET)