visualfile = './visualized/'+versionName+'-augmented.jpg' orient = 9 pix_per_cell = 8 cell_per_block = 2 ### Final ### # try to make thresholds LOWER! # remove more false positives hthreshold = 5.0 # remove more false negatives lthreshold = 3.0 svc = joblib.load(trained_model) slide_window = SlidingWindows() chog = CHOG(trained_scalar=trained_scalar) outimages = [] images = glob.glob('./test_images/test*proj.jpg') for file in images: print("processing: ", file) image = cv2.cvtColor(cv2.imread(file), cv2.COLOR_BGR2RGB) print("initializing...") windows = slide_window.completeScan(file) foundwindows = [] print("Processing",len(windows),"windows high...") for window in windows: wimage = image[window[0][1]:window[1][1], window[0][0]:window[1][0]]
import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import numpy as np import cv2 import glob import time from sklearn.svm import LinearSVC from sklearn.preprocessing import StandardScaler from skimage.feature import hog from sklearn.externals import joblib from testlib.slidingWindows import SlidingWindows from testlib.CHOG import CHOG versionName = 'CHOG-TEST-XO2' visualfile = './visualized/' + versionName + '-augmented.jpg' slide_window = SlidingWindows() chog = CHOG() outimages = [] images = glob.glob('./test_images/test*proj.jpg') for file in images: print("processing: ", file) image = cv2.cvtColor(cv2.imread(file), cv2.COLOR_BGR2RGB) print("initializing...") windows = slide_window.sentinalScan(file) window_img = chog.draw_boxes(image, windows, color=(0, 0, 255), thick=2) outimages.append((file, 0, 0, 0, image, window_img)) chog.drawXOPlots(visualfile, versionName, outimages)