def test_strict_model_load(monkeypatch, tmpdir, tmpdir_server, url_ckpt): """Tests use case where trainer saves the model, and user loads it from tags independently.""" # set $TORCH_HOME, which determines torch hub's cache path, to tmpdir monkeypatch.setenv('TORCH_HOME', tmpdir) model = EvalModelTemplate() # Extra layer model.c_d3 = torch.nn.Linear(model.hidden_dim, model.hidden_dim) # logger file to get meta logger = tutils.get_default_logger(tmpdir) # fit model trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, logger=logger, checkpoint_callback=ModelCheckpoint(tmpdir), ) result = trainer.fit(model) # traning complete assert result == 1 # save model new_weights_path = os.path.join(tmpdir, 'save_test.ckpt') trainer.save_checkpoint(new_weights_path) # load new model hparams_path = tutils.get_data_path(logger, path_dir=tmpdir) hparams_path = os.path.join(hparams_path, 'hparams.yaml') ckpt_path = f'http://{tmpdir_server[0]}:{tmpdir_server[1]}/{os.path.basename(new_weights_path)}' \ if url_ckpt else new_weights_path try: EvalModelTemplate.load_from_checkpoint( checkpoint_path=ckpt_path, hparams_file=hparams_path, ) except Exception: failed = True else: failed = False assert failed, "Model should not been loaded since the extra layer added." failed = False try: EvalModelTemplate.load_from_checkpoint( checkpoint_path=ckpt_path, hparams_file=hparams_path, strict=False, ) except Exception: failed = True assert not failed, "Model should be loaded due to strict=False."
def test_strict_model_load_less_params(monkeypatch, tmpdir, tmpdir_server, url_ckpt): """Tests use case where trainer saves the model, and user loads it from tags independently.""" # set $TORCH_HOME, which determines torch hub's cache path, to tmpdir monkeypatch.setenv('TORCH_HOME', tmpdir) model = EvalModelTemplate() # logger file to get meta logger = tutils.get_default_logger(tmpdir) # fit model trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, logger=logger, checkpoint_callback=ModelCheckpoint(tmpdir), ) result = trainer.fit(model) # traning complete assert result == 1 # save model new_weights_path = os.path.join(tmpdir, 'save_test.ckpt') trainer.save_checkpoint(new_weights_path) # load new model hparams_path = os.path.join(tutils.get_data_path(logger, path_dir=tmpdir), 'hparams.yaml') hparams_url = f'http://{tmpdir_server[0]}:{tmpdir_server[1]}/{os.path.basename(new_weights_path)}' ckpt_path = hparams_url if url_ckpt else new_weights_path class CurrentModel(EvalModelTemplate): def __init__(self): super().__init__() self.c_d3 = torch.nn.Linear(7, 7) CurrentModel.load_from_checkpoint( checkpoint_path=ckpt_path, hparams_file=hparams_path, strict=False, ) with pytest.raises( RuntimeError, match=r'Missing key\(s\) in state_dict: "c_d3.weight", "c_d3.bias"' ): CurrentModel.load_from_checkpoint( checkpoint_path=ckpt_path, hparams_file=hparams_path, strict=True, )
def test_model_saving_loading(tmpdir): """Tests use case where trainer saves the model, and user loads it from tags independently.""" model = EvalModelTemplate() # logger file to get meta logger = tutils.get_default_logger(tmpdir) # fit model trainer = Trainer( max_epochs=1, logger=logger, checkpoint_callback=ModelCheckpoint(tmpdir), default_root_dir=tmpdir, ) result = trainer.fit(model) # traning complete assert result == 1, 'amp + ddp model failed to complete' # make a prediction dataloaders = model.test_dataloader() if not isinstance(dataloaders, list): dataloaders = [dataloaders] for dataloader in dataloaders: for batch in dataloader: break x, y = batch x = x.view(x.size(0), -1) # generate preds before saving model model.eval() pred_before_saving = model(x) # save model new_weights_path = os.path.join(tmpdir, 'save_test.ckpt') trainer.save_checkpoint(new_weights_path) # load new model hparams_path = tutils.get_data_path(logger, path_dir=tmpdir) hparams_path = os.path.join(hparams_path, 'hparams.yaml') model_2 = EvalModelTemplate.load_from_checkpoint( checkpoint_path=new_weights_path, hparams_file=hparams_path, ) model_2.eval() # make prediction # assert that both predictions are the same new_pred = model_2(x) assert torch.all(torch.eq(pred_before_saving, new_pred)).item() == 1
def test_running_test_pretrained_model_distrib_ddp_spawn(tmpdir): """Verify `test()` on pretrained model.""" tutils.set_random_master_port() model = EvalModelTemplate() # exp file to get meta logger = tutils.get_default_logger(tmpdir) # exp file to get weights checkpoint = tutils.init_checkpoint_callback(logger) trainer_options = dict( progress_bar_refresh_rate=0, max_epochs=2, limit_train_batches=0.4, limit_val_batches=0.2, checkpoint_callback=checkpoint, logger=logger, gpus=[0, 1], distributed_backend='ddp_spawn', default_root_dir=tmpdir, ) # fit model trainer = Trainer(**trainer_options) result = trainer.fit(model) log.info(os.listdir(tutils.get_data_path(logger, path_dir=tmpdir))) # correct result and ok accuracy assert result == 1, 'training failed to complete' pretrained_model = EvalModelTemplate.load_from_checkpoint( trainer.checkpoint_callback.best_model_path) # run test set new_trainer = Trainer(**trainer_options) results = new_trainer.test(pretrained_model) pretrained_model.cpu() acc = results[0]['test_acc'] assert acc > 0.5, f"Model failed to get expected {0.5} accuracy. test_acc = {acc}" dataloaders = model.test_dataloader() if not isinstance(dataloaders, list): dataloaders = [dataloaders] for dataloader in dataloaders: tpipes.run_prediction(dataloader, pretrained_model)
def test_running_test_pretrained_model_distrib(tmpdir, backend): """Verify `test()` on pretrained model.""" tutils.set_random_master_port() model = EvalModelTemplate() # exp file to get meta logger = tutils.get_default_logger(tmpdir) # exp file to get weights checkpoint = tutils.init_checkpoint_callback(logger) trainer_options = dict( progress_bar_refresh_rate=0, max_epochs=2, limit_train_batches=0.4, limit_val_batches=0.2, checkpoint_callback=checkpoint, logger=logger, gpus=[0, 1], distributed_backend=backend, ) # fit model trainer = Trainer(**trainer_options) result = trainer.fit(model) log.info(os.listdir(tutils.get_data_path(logger, path_dir=tmpdir))) # correct result and ok accuracy assert result == 1, 'training failed to complete' pretrained_model = tutils.load_model_from_checkpoint( logger, trainer.checkpoint_callback.dirpath, module_class=EvalModelTemplate) # run test set new_trainer = Trainer(**trainer_options) new_trainer.test(pretrained_model) # test we have good test accuracy tutils.assert_ok_model_acc(new_trainer) dataloaders = model.test_dataloader() if not isinstance(dataloaders, list): dataloaders = [dataloaders] for dataloader in dataloaders: tpipes.run_prediction(dataloader, pretrained_model)
def test_loading_yaml(tmpdir): tutils.reset_seed() hparams = EvalModelTemplate.get_default_hparams() # save tags logger = tutils.get_default_logger(tmpdir) logger.log_hyperparams(Namespace(some_str='a_str', an_int=1, a_float=2.0)) logger.log_hyperparams(hparams) logger.save() # load hparams path_expt_dir = tutils.get_data_path(logger, path_dir=tmpdir) hparams_path = os.path.join(path_expt_dir, 'hparams.yaml') tags = load_hparams_from_yaml(hparams_path) assert tags['batch_size'] == 32 and tags['hidden_dim'] == 1000
def test_no_val_module(monkeypatch, tmpdir, tmpdir_server, url_ckpt): """Tests use case where trainer saves the model, and user loads it from tags independently.""" # set $TORCH_HOME, which determines torch hub's cache path, to tmpdir monkeypatch.setenv("TORCH_HOME", str(tmpdir)) model = EvalModelTemplate() # logger file to get meta logger = tutils.get_default_logger(tmpdir) trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, logger=logger, checkpoint_callback=ModelCheckpoint(dirpath=tmpdir), ) # fit model result = trainer.fit(model) # training complete assert result == 1, "amp + ddp model failed to complete" # save model new_weights_path = os.path.join(tmpdir, "save_test.ckpt") trainer.save_checkpoint(new_weights_path) # assert ckpt has hparams ckpt = torch.load(new_weights_path) assert LightningModule.CHECKPOINT_HYPER_PARAMS_KEY in ckpt.keys(), "module_arguments missing from checkpoints" # load new model hparams_path = tutils.get_data_path(logger, path_dir=tmpdir) hparams_path = os.path.join(hparams_path, "hparams.yaml") ckpt_path = ( f"http://{tmpdir_server[0]}:{tmpdir_server[1]}/{os.path.basename(new_weights_path)}" if url_ckpt else new_weights_path ) model_2 = EvalModelTemplate.load_from_checkpoint( checkpoint_path=ckpt_path, hparams_file=hparams_path, ) model_2.eval()
def test_loading_meta_tags(tmpdir): """ test for backward compatibility to meta_tags.csv """ tutils.reset_seed() hparams = EvalModelTemplate.get_default_hparams() # save tags logger = tutils.get_default_logger(tmpdir) logger.log_hyperparams(Namespace(some_str='a_str', an_int=1, a_float=2.0)) logger.log_hyperparams(hparams) logger.save() # load hparams path_expt_dir = tutils.get_data_path(logger, path_dir=tmpdir) hparams_path = os.path.join(path_expt_dir, TensorBoardLogger.NAME_HPARAMS_FILE) hparams = load_hparams_from_yaml(hparams_path) # save as legacy meta_tags.csv tags_path = os.path.join(path_expt_dir, 'meta_tags.csv') save_hparams_to_tags_csv(tags_path, hparams) tags = load_hparams_from_tags_csv(tags_path) assert hparams == tags