def test_strict_model_load(monkeypatch, tmpdir, tmpdir_server, url_ckpt):
    """Tests use case where trainer saves the model, and user loads it from tags independently."""
    # set $TORCH_HOME, which determines torch hub's cache path, to tmpdir
    monkeypatch.setenv('TORCH_HOME', tmpdir)

    model = EvalModelTemplate()
    # Extra layer
    model.c_d3 = torch.nn.Linear(model.hidden_dim, model.hidden_dim)

    # logger file to get meta
    logger = tutils.get_default_logger(tmpdir)

    # fit model
    trainer = Trainer(
        default_root_dir=tmpdir,
        max_epochs=1,
        logger=logger,
        checkpoint_callback=ModelCheckpoint(tmpdir),
    )
    result = trainer.fit(model)

    # traning complete
    assert result == 1

    # save model
    new_weights_path = os.path.join(tmpdir, 'save_test.ckpt')
    trainer.save_checkpoint(new_weights_path)

    # load new model
    hparams_path = tutils.get_data_path(logger, path_dir=tmpdir)
    hparams_path = os.path.join(hparams_path, 'hparams.yaml')
    ckpt_path = f'http://{tmpdir_server[0]}:{tmpdir_server[1]}/{os.path.basename(new_weights_path)}' \
        if url_ckpt else new_weights_path

    try:
        EvalModelTemplate.load_from_checkpoint(
            checkpoint_path=ckpt_path,
            hparams_file=hparams_path,
        )
    except Exception:
        failed = True
    else:
        failed = False

    assert failed, "Model should not been loaded since the extra layer added."

    failed = False
    try:
        EvalModelTemplate.load_from_checkpoint(
            checkpoint_path=ckpt_path,
            hparams_file=hparams_path,
            strict=False,
        )
    except Exception:
        failed = True

    assert not failed, "Model should be loaded due to strict=False."
def test_strict_model_load_less_params(monkeypatch, tmpdir, tmpdir_server,
                                       url_ckpt):
    """Tests use case where trainer saves the model, and user loads it from tags independently."""
    # set $TORCH_HOME, which determines torch hub's cache path, to tmpdir
    monkeypatch.setenv('TORCH_HOME', tmpdir)

    model = EvalModelTemplate()

    # logger file to get meta
    logger = tutils.get_default_logger(tmpdir)

    # fit model
    trainer = Trainer(
        default_root_dir=tmpdir,
        max_epochs=1,
        logger=logger,
        checkpoint_callback=ModelCheckpoint(tmpdir),
    )
    result = trainer.fit(model)

    # traning complete
    assert result == 1

    # save model
    new_weights_path = os.path.join(tmpdir, 'save_test.ckpt')
    trainer.save_checkpoint(new_weights_path)

    # load new model
    hparams_path = os.path.join(tutils.get_data_path(logger, path_dir=tmpdir),
                                'hparams.yaml')
    hparams_url = f'http://{tmpdir_server[0]}:{tmpdir_server[1]}/{os.path.basename(new_weights_path)}'
    ckpt_path = hparams_url if url_ckpt else new_weights_path

    class CurrentModel(EvalModelTemplate):
        def __init__(self):
            super().__init__()
            self.c_d3 = torch.nn.Linear(7, 7)

    CurrentModel.load_from_checkpoint(
        checkpoint_path=ckpt_path,
        hparams_file=hparams_path,
        strict=False,
    )

    with pytest.raises(
            RuntimeError,
            match=r'Missing key\(s\) in state_dict: "c_d3.weight", "c_d3.bias"'
    ):
        CurrentModel.load_from_checkpoint(
            checkpoint_path=ckpt_path,
            hparams_file=hparams_path,
            strict=True,
        )
def test_model_saving_loading(tmpdir):
    """Tests use case where trainer saves the model, and user loads it from tags independently."""
    model = EvalModelTemplate()

    # logger file to get meta
    logger = tutils.get_default_logger(tmpdir)

    # fit model
    trainer = Trainer(
        max_epochs=1,
        logger=logger,
        checkpoint_callback=ModelCheckpoint(tmpdir),
        default_root_dir=tmpdir,
    )
    result = trainer.fit(model)

    # traning complete
    assert result == 1, 'amp + ddp model failed to complete'

    # make a prediction
    dataloaders = model.test_dataloader()
    if not isinstance(dataloaders, list):
        dataloaders = [dataloaders]

    for dataloader in dataloaders:
        for batch in dataloader:
            break

    x, y = batch
    x = x.view(x.size(0), -1)

    # generate preds before saving model
    model.eval()
    pred_before_saving = model(x)

    # save model
    new_weights_path = os.path.join(tmpdir, 'save_test.ckpt')
    trainer.save_checkpoint(new_weights_path)

    # load new model
    hparams_path = tutils.get_data_path(logger, path_dir=tmpdir)
    hparams_path = os.path.join(hparams_path, 'hparams.yaml')
    model_2 = EvalModelTemplate.load_from_checkpoint(
        checkpoint_path=new_weights_path,
        hparams_file=hparams_path,
    )
    model_2.eval()

    # make prediction
    # assert that both predictions are the same
    new_pred = model_2(x)
    assert torch.all(torch.eq(pred_before_saving, new_pred)).item() == 1
Exemple #4
0
def test_running_test_pretrained_model_distrib_ddp_spawn(tmpdir):
    """Verify `test()` on pretrained model."""
    tutils.set_random_master_port()

    model = EvalModelTemplate()

    # exp file to get meta
    logger = tutils.get_default_logger(tmpdir)

    # exp file to get weights
    checkpoint = tutils.init_checkpoint_callback(logger)

    trainer_options = dict(
        progress_bar_refresh_rate=0,
        max_epochs=2,
        limit_train_batches=0.4,
        limit_val_batches=0.2,
        checkpoint_callback=checkpoint,
        logger=logger,
        gpus=[0, 1],
        distributed_backend='ddp_spawn',
        default_root_dir=tmpdir,
    )

    # fit model
    trainer = Trainer(**trainer_options)
    result = trainer.fit(model)

    log.info(os.listdir(tutils.get_data_path(logger, path_dir=tmpdir)))

    # correct result and ok accuracy
    assert result == 1, 'training failed to complete'
    pretrained_model = EvalModelTemplate.load_from_checkpoint(
        trainer.checkpoint_callback.best_model_path)

    # run test set
    new_trainer = Trainer(**trainer_options)
    results = new_trainer.test(pretrained_model)
    pretrained_model.cpu()

    acc = results[0]['test_acc']
    assert acc > 0.5, f"Model failed to get expected {0.5} accuracy. test_acc = {acc}"

    dataloaders = model.test_dataloader()
    if not isinstance(dataloaders, list):
        dataloaders = [dataloaders]

    for dataloader in dataloaders:
        tpipes.run_prediction(dataloader, pretrained_model)
def test_running_test_pretrained_model_distrib(tmpdir, backend):
    """Verify `test()` on pretrained model."""
    tutils.set_random_master_port()

    model = EvalModelTemplate()

    # exp file to get meta
    logger = tutils.get_default_logger(tmpdir)

    # exp file to get weights
    checkpoint = tutils.init_checkpoint_callback(logger)

    trainer_options = dict(
        progress_bar_refresh_rate=0,
        max_epochs=2,
        limit_train_batches=0.4,
        limit_val_batches=0.2,
        checkpoint_callback=checkpoint,
        logger=logger,
        gpus=[0, 1],
        distributed_backend=backend,
    )

    # fit model
    trainer = Trainer(**trainer_options)
    result = trainer.fit(model)

    log.info(os.listdir(tutils.get_data_path(logger, path_dir=tmpdir)))

    # correct result and ok accuracy
    assert result == 1, 'training failed to complete'
    pretrained_model = tutils.load_model_from_checkpoint(
        logger,
        trainer.checkpoint_callback.dirpath,
        module_class=EvalModelTemplate)

    # run test set
    new_trainer = Trainer(**trainer_options)
    new_trainer.test(pretrained_model)

    # test we have good test accuracy
    tutils.assert_ok_model_acc(new_trainer)

    dataloaders = model.test_dataloader()
    if not isinstance(dataloaders, list):
        dataloaders = [dataloaders]

    for dataloader in dataloaders:
        tpipes.run_prediction(dataloader, pretrained_model)
Exemple #6
0
def test_loading_yaml(tmpdir):
    tutils.reset_seed()

    hparams = EvalModelTemplate.get_default_hparams()

    # save tags
    logger = tutils.get_default_logger(tmpdir)
    logger.log_hyperparams(Namespace(some_str='a_str', an_int=1, a_float=2.0))
    logger.log_hyperparams(hparams)
    logger.save()

    # load hparams
    path_expt_dir = tutils.get_data_path(logger, path_dir=tmpdir)
    hparams_path = os.path.join(path_expt_dir, 'hparams.yaml')
    tags = load_hparams_from_yaml(hparams_path)

    assert tags['batch_size'] == 32 and tags['hidden_dim'] == 1000
def test_no_val_module(monkeypatch, tmpdir, tmpdir_server, url_ckpt):
    """Tests use case where trainer saves the model, and user loads it from tags independently."""
    # set $TORCH_HOME, which determines torch hub's cache path, to tmpdir
    monkeypatch.setenv("TORCH_HOME", str(tmpdir))

    model = EvalModelTemplate()

    # logger file to get meta
    logger = tutils.get_default_logger(tmpdir)

    trainer = Trainer(
        default_root_dir=tmpdir,
        max_epochs=1,
        logger=logger,
        checkpoint_callback=ModelCheckpoint(dirpath=tmpdir),
    )
    # fit model
    result = trainer.fit(model)
    # training complete
    assert result == 1, "amp + ddp model failed to complete"

    # save model
    new_weights_path = os.path.join(tmpdir, "save_test.ckpt")
    trainer.save_checkpoint(new_weights_path)

    # assert ckpt has hparams
    ckpt = torch.load(new_weights_path)
    assert LightningModule.CHECKPOINT_HYPER_PARAMS_KEY in ckpt.keys(), "module_arguments missing from checkpoints"

    # load new model
    hparams_path = tutils.get_data_path(logger, path_dir=tmpdir)
    hparams_path = os.path.join(hparams_path, "hparams.yaml")
    ckpt_path = (
        f"http://{tmpdir_server[0]}:{tmpdir_server[1]}/{os.path.basename(new_weights_path)}"
        if url_ckpt
        else new_weights_path
    )
    model_2 = EvalModelTemplate.load_from_checkpoint(
        checkpoint_path=ckpt_path,
        hparams_file=hparams_path,
    )
    model_2.eval()
def test_loading_meta_tags(tmpdir):
    """ test for backward compatibility to meta_tags.csv """
    tutils.reset_seed()

    hparams = EvalModelTemplate.get_default_hparams()

    # save tags
    logger = tutils.get_default_logger(tmpdir)
    logger.log_hyperparams(Namespace(some_str='a_str', an_int=1, a_float=2.0))
    logger.log_hyperparams(hparams)
    logger.save()

    # load hparams
    path_expt_dir = tutils.get_data_path(logger, path_dir=tmpdir)
    hparams_path = os.path.join(path_expt_dir, TensorBoardLogger.NAME_HPARAMS_FILE)
    hparams = load_hparams_from_yaml(hparams_path)

    # save as legacy meta_tags.csv
    tags_path = os.path.join(path_expt_dir, 'meta_tags.csv')
    save_hparams_to_tags_csv(tags_path, hparams)

    tags = load_hparams_from_tags_csv(tags_path)

    assert hparams == tags