def test_sync_reduce_ddp():
    """Make sure sync-reduce works with DDP"""
    tutils.reset_seed()
    tutils.set_random_master_port()

    worldsize = 2
    mp.spawn(_ddp_test_fn, args=(worldsize,), nprocs=worldsize)
def test_amp_gpu_ddp_slurm_managed(tmpdir):
    """Make sure DDP + AMP work."""
    # simulate setting slurm flags
    tutils.set_random_master_port()
    os.environ['SLURM_LOCALID'] = str(0)

    model = EvalModelTemplate(tutils.get_default_hparams())

    # exp file to get meta
    logger = tutils.get_default_logger(tmpdir)

    # exp file to get weights
    checkpoint = tutils.init_checkpoint_callback(logger)

    # fit model
    trainer = Trainer(
        max_epochs=1,
        gpus=[0],
        distributed_backend='ddp',
        precision=16,
        checkpoint_callback=checkpoint,
        logger=logger,
    )
    trainer.is_slurm_managing_tasks = True
    result = trainer.fit(model)

    # correct result and ok accuracy
    assert result == 1, 'amp + ddp model failed to complete'

    # test root model address
    assert trainer.resolve_root_node_address('abc') == 'abc'
    assert trainer.resolve_root_node_address('abc[23]') == 'abc23'
    assert trainer.resolve_root_node_address('abc[23-24]') == 'abc23'
    assert trainer.resolve_root_node_address(
        'abc[23-24, 45-40, 40]') == 'abc23'
def run_test_from_config(trainer_options):
    """Trains the default model with the given config."""
    tutils.reset_seed()
    tutils.set_random_master_port()

    ckpt_path = trainer_options['default_root_dir']
    trainer_options['checkpoint_callback'] = ModelCheckpoint(ckpt_path)

    model, hparams = tutils.get_default_model()
    tutils.run_model_test(trainer_options, model, version=0, with_hpc=False)

    # Horovod should be initialized following training. If not, this will raise an exception.
    assert hvd.size() == 2
def test_running_test_pretrained_model_distrib(tmpdir, backend):
    """Verify `test()` on pretrained model."""

    tutils.reset_seed()
    tutils.set_random_master_port()

    hparams = tutils.get_default_hparams()
    model = LightningTestModel(hparams)

    # exp file to get meta
    logger = tutils.get_default_logger(tmpdir)

    # exp file to get weights
    checkpoint = tutils.init_checkpoint_callback(logger)

    trainer_options = dict(
        progress_bar_refresh_rate=0,
        max_epochs=2,
        train_percent_check=0.4,
        val_percent_check=0.2,
        checkpoint_callback=checkpoint,
        logger=logger,
        gpus=[0, 1],
        distributed_backend=backend,
    )

    # fit model
    trainer = Trainer(**trainer_options)
    result = trainer.fit(model)

    log.info(os.listdir(tutils.get_data_path(logger, path_dir=tmpdir)))

    # correct result and ok accuracy
    assert result == 1, 'training failed to complete'
    pretrained_model = tutils.load_model(logger,
                                         trainer.checkpoint_callback.dirpath,
                                         module_class=LightningTestModel)

    # run test set
    new_trainer = Trainer(**trainer_options)
    new_trainer.test(pretrained_model)

    # test we have good test accuracy
    tutils.assert_ok_model_acc(new_trainer)

    dataloaders = model.test_dataloader()
    if not isinstance(dataloaders, list):
        dataloaders = [dataloaders]

    for dataloader in dataloaders:
        tutils.run_prediction(dataloader, pretrained_model)
def test_multi_cpu_model_ddp(tmpdir):
    """Make sure DDP works."""
    tutils.set_random_master_port()

    trainer_options = dict(default_root_dir=tmpdir,
                           progress_bar_refresh_rate=0,
                           max_epochs=1,
                           train_percent_check=0.4,
                           val_percent_check=0.2,
                           gpus=None,
                           num_processes=2,
                           distributed_backend='ddp_cpu')

    model = EvalModelTemplate()
    tutils.run_model_test(trainer_options, model, on_gpu=False)
Exemple #6
0
def test_amp_gpu_ddp(tmpdir):
    """Make sure DDP + AMP work."""
    tutils.reset_seed()
    tutils.set_random_master_port()

    hparams = tutils.get_default_hparams()
    model = LightningTestModel(hparams)

    trainer_options = dict(default_save_path=tmpdir,
                           max_epochs=1,
                           gpus=2,
                           distributed_backend='ddp',
                           precision=16)

    tutils.run_model_test(trainer_options, model)
Exemple #7
0
def test_multi_gpu_model_ddp2(tmpdir):
    """Make sure DDP2 works."""

    tutils.reset_seed()
    tutils.set_random_master_port()

    model, hparams = tutils.get_default_model()
    trainer_options = dict(default_save_path=tmpdir,
                           max_epochs=1,
                           train_percent_check=0.4,
                           val_percent_check=0.2,
                           gpus=2,
                           weights_summary=None,
                           distributed_backend='ddp2')

    tutils.run_model_test(trainer_options, model)
def test_multi_gpu_model_ddp(tmpdir):
    """Make sure DDP works."""

    tutils.reset_seed()
    tutils.set_random_master_port()

    model, hparams = tutils.get_default_model()
    trainer_options = dict(default_save_path=tmpdir,
                           show_progress_bar=False,
                           max_epochs=1,
                           train_percent_check=0.4,
                           val_percent_check=0.2,
                           gpus=[0, 1],
                           distributed_backend='ddp')

    tutils.run_model_test(trainer_options, model)
Exemple #9
0
def run_test_from_config(trainer_options):
    """Trains the default model with the given config."""
    set_random_master_port()

    ckpt_path = trainer_options['default_root_dir']
    trainer_options.update(checkpoint_callback=ModelCheckpoint(ckpt_path))

    model = EvalModelTemplate()
    run_model_test(trainer_options, model, on_gpu=args.on_gpu, version=0, with_hpc=False)

    # Horovod should be initialized following training. If not, this will raise an exception.
    assert hvd.size() == 2

    if args.on_gpu:
        trainer = Trainer(gpus=1, distributed_backend='horovod', max_epochs=1)
        # Test the root_gpu property
        assert trainer.root_gpu == hvd.local_rank()
def test_amp_multi_gpu(tmpdir, backend):
    """Make sure DP/DDP + AMP work."""
    tutils.set_random_master_port()

    model = EvalModelTemplate(tutils.get_default_hparams())

    trainer_options = dict(
        default_root_dir=tmpdir,
        max_epochs=1,
        # gpus=2,
        gpus='0, 1',  # test init with gpu string
        distributed_backend=backend,
        precision=16)

    # tutils.run_model_test(trainer_options, model)
    trainer = Trainer(**trainer_options)
    result = trainer.fit(model)
    assert result
Exemple #11
0
def test_amp_gpu_ddp_slurm_managed(tmpdir):
    """Make sure DDP + AMP work."""
    if not tutils.can_run_gpu_test():
        return

    tutils.reset_seed()

    # simulate setting slurm flags
    tutils.set_random_master_port()
    os.environ['SLURM_LOCALID'] = str(0)

    hparams = tutils.get_default_hparams()
    model = LightningTestModel(hparams)

    trainer_options = dict(show_progress_bar=True,
                           max_epochs=1,
                           gpus=[0],
                           distributed_backend='ddp',
                           precision=16)

    # exp file to get meta
    logger = tutils.get_default_testtube_logger(tmpdir, False)

    # exp file to get weights
    checkpoint = tutils.init_checkpoint_callback(logger)

    # add these to the trainer options
    trainer_options['checkpoint_callback'] = checkpoint
    trainer_options['logger'] = logger

    # fit model
    trainer = Trainer(**trainer_options)
    trainer.is_slurm_managing_tasks = True
    result = trainer.fit(model)

    # correct result and ok accuracy
    assert result == 1, 'amp + ddp model failed to complete'

    # test root model address
    assert trainer.resolve_root_node_address('abc') == 'abc'
    assert trainer.resolve_root_node_address('abc[23]') == 'abc23'
    assert trainer.resolve_root_node_address('abc[23-24]') == 'abc23'
    assert trainer.resolve_root_node_address(
        'abc[23-24, 45-40, 40]') == 'abc23'
Exemple #12
0
def test_ddp_all_dataloaders_passed_to_fit(tmpdir):
    """Make sure DDP works with dataloaders passed to fit()"""
    tutils.set_random_master_port()

    trainer_options = dict(default_root_dir=tmpdir,
                           progress_bar_refresh_rate=0,
                           max_epochs=1,
                           train_percent_check=0.4,
                           val_percent_check=0.2,
                           gpus=[0, 1],
                           distributed_backend='ddp')

    model = EvalModelTemplate()
    fit_options = dict(train_dataloader=model.train_dataloader(),
                       val_dataloaders=model.val_dataloader())

    trainer = Trainer(**trainer_options)
    result = trainer.fit(model, **fit_options)
    assert result == 1, "DDP doesn't work with dataloaders passed to fit()."
Exemple #13
0
def test_ddp_all_dataloaders_passed_to_fit(tmpdir):
    """Make sure DDP works with dataloaders passed to fit()"""

    tutils.reset_seed()
    tutils.set_random_master_port()

    model, hparams = tutils.get_default_model()

    trainer = Trainer(default_root_dir=tmpdir,
                      progress_bar_refresh_rate=0,
                      max_epochs=1,
                      train_percent_check=0.4,
                      val_percent_check=0.2,
                      gpus=[0, 1],
                      distributed_backend='ddp')
    result = trainer.fit(model,
                         train_dataloader=model.train_dataloader(),
                         val_dataloaders=model.val_dataloader())
    assert result == 1, "DDP doesn't work with dataloaders passed to fit()."
Exemple #14
0
def test_multi_gpu_model(tmpdir, backend):
    """Make sure DDP works."""
    tutils.set_random_master_port()

    trainer_options = dict(
        default_root_dir=tmpdir,
        max_epochs=1,
        train_percent_check=0.4,
        val_percent_check=0.2,
        gpus=[0, 1],
        distributed_backend=backend,
    )

    model = EvalModelTemplate()
    # tutils.run_model_test(trainer_options, model)
    trainer = Trainer(**trainer_options)
    result = trainer.fit(model)
    assert result

    # test memory helper functions
    memory.get_memory_profile('min_max')
def test_ddp_all_dataloaders_passed_to_fit(tmpdir):
    """Make sure DDP works with dataloaders passed to fit()"""

    tutils.reset_seed()
    tutils.set_random_master_port()

    model, hparams = tutils.get_default_model()
    trainer_options = dict(default_save_path=tmpdir,
                           show_progress_bar=False,
                           max_epochs=1,
                           train_percent_check=0.4,
                           val_percent_check=0.2,
                           gpus=[0, 1],
                           distributed_backend='ddp')

    fit_options = dict(train_dataloader=model.train_dataloader(),
                       val_dataloaders=model.val_dataloader())

    trainer = Trainer(**trainer_options)
    result = trainer.fit(model, **fit_options)
    assert result == 1, "DDP doesn't work with dataloaders passed to fit()."
def test_multi_gpu_wandb(tmpdir, backend):
    """Make sure DP/DDP + AMP work."""
    from pytorch_lightning.loggers import WandbLogger
    tutils.set_random_master_port()

    model = EvalModelTemplate()
    logger = WandbLogger(name='utest')

    trainer_options = dict(
        default_root_dir=tmpdir,
        max_epochs=1,
        gpus=2,
        distributed_backend=backend,
        precision=16,
        logger=logger,
    )
    # tutils.run_model_test(trainer_options, model)
    trainer = Trainer(**trainer_options)
    result = trainer.fit(model)
    assert result
    trainer.test(model)
def test_numpy_metric_ddp():
    tutils.reset_seed()
    tutils.set_random_master_port()
    world_size = 2
    mp.spawn(_ddp_test_numpy_metric, args=(world_size,), nprocs=world_size)