def test_experiment_boston(self): papermill.execute_notebook( "Experiment.ipynb", "/dev/null", parameters=dict( dataset="/tmp/data/boston.csv", target="medv", filter_type="remover", model_features="", one_hot_features="", kernel="rbf", degree=3, gamma="auto", C=1.0, max_iter=-1, ), ) papermill.execute_notebook( "Deployment.ipynb", "/dev/null", ) data = datasets.boston_testdata() with server.Server() as s: response = s.test(data=data) names = response["names"] ndarray = response["ndarray"] self.assertEqual(len(ndarray[0]), 14) # 13 features + 1 prediction self.assertEqual(len(names), 14)
def test_experiment_boston(self): papermill.execute_notebook( "Experiment.ipynb", "/dev/null", parameters=dict( dataset="/tmp/data/boston.csv", target="medv", filter_type="remover", model_features="", one_hot_features="", time_left_for_this_task=30, per_run_time_limit=30, ensemble_size=5, ), ) papermill.execute_notebook( "Deployment.ipynb", "/dev/null", ) data = datasets.boston_testdata() with server.Server() as s: response = s.test(data=data) names = response["names"] ndarray = response["ndarray"] self.assertEqual(len(ndarray[0]), 14) # 13 features + 1 prediction self.assertEqual(len(names), 14)
def test_experiment_boston(self): papermill.execute_notebook( "Experiment.ipynb", "/dev/null", parameters=dict( dataset="/tmp/data/boston.csv", target="medv", filter_type="remover", model_features="", ordinal_features="", fit_intercept=True, ), ) papermill.execute_notebook( "Deployment.ipynb", "/dev/null", ) data = datasets.boston_testdata() with server.Server() as s: response = s.test(data=data) names = response["names"] ndarray = response["ndarray"] self.assertEqual(len(ndarray[0]), 14) # 13 features + 1 prediction self.assertEqual(len(names), 14)
def test_experiment_boston(self): papermill.execute_notebook( "Experiment.ipynb", "/dev/null", parameters=dict( dataset="/tmp/data/boston.csv", filter_type = "remover", model_features = "medv", max_samples="auto", contamination=0.1, max_features=1.0, ), ) papermill.execute_notebook( "Deployment.ipynb", "/dev/null", ) data = datasets.boston_testdata() with server.Server() as s: response = s.test(data=data) names = response["names"] ndarray = response["ndarray"] self.assertEqual(len(ndarray[0]), 14) # 13 features + 1 anomaly score self.assertEqual(len(names), 14)
def test_experiment_boston(self): papermill.execute_notebook( "Experiment.ipynb", "/dev/null", parameters=dict( dataset="/tmp/data/boston.csv", target="medv", strategy_num="mean", strategy_cat="most_frequent", fillvalue_num=0, fillvalue_cat="", ), ) papermill.execute_notebook( "Deployment.ipynb", "/dev/null", ) data = datasets.boston_testdata() with server.Server() as s: response = s.test(data=data) names = response["names"] ndarray = response["ndarray"] self.assertEqual(len(ndarray[0]), 13) # 13 features self.assertEqual(len(names), 13)
def test_experiment_boston(self): papermill.execute_notebook( "Experiment.ipynb", "/dev/null", parameters=dict( dataset="/tmp/data/boston.csv", target="medv", filter_type="remover", model_features="", one_hot_features="", hidden_layer_sizes=100, activation="relu", solver="adam", learning_rate="constant", max_iter=200, shuffle=True, ), ) papermill.execute_notebook( "Deployment.ipynb", "/dev/null", ) data = datasets.boston_testdata() with server.Server() as s: response = s.test(data=data) names = response["names"] ndarray = response["ndarray"] self.assertEqual(len(ndarray[0]), 14) # 13 features + 1 prediction self.assertEqual(len(names), 14)
def test_experiment_boston(self): papermill.execute_notebook( "Experiment.ipynb", "/dev/null", parameters=dict( dataset="/tmp/data/boston.csv", filter_type="remover", model_features="medv", n_clusters=3, n_init=10, max_iter=300, algorithm="auto", ), ) papermill.execute_notebook( "Deployment.ipynb", "/dev/null", ) data = datasets.boston_testdata() with server.Server() as s: response = s.test(data=data) names = response["names"] ndarray = response["ndarray"] self.assertEqual(len(ndarray[0]), 17) # 13 features+ 1 cluster + 3 distance to clusters self.assertEqual(len(names), 17)
def test_experiment_boston(self): papermill.execute_notebook( "Experiment.ipynb", "/dev/null", parameters=dict( dataset="/tmp/data/boston.csv", target="medv", cutoff=0.9, threshold=0.0, ), ) papermill.execute_notebook( "Deployment.ipynb", "/dev/null", ) data = datasets.boston_testdata() with server.Server() as s: response = s.test(data=data) names = response["names"] ndarray = response["ndarray"] self.assertEqual(len(ndarray[0]), 12) # 13 features - 1 removed self.assertEqual(len(names), 12)